Application Development of Student's Graduation Classification Model based on The First 2 Years Performance using K-Nearest Neighbor

Prasetyawan P, Faridz Abadi M

Abstract


A College keeps a lot of data such as, academic data, administration, student biodata and others. The existing student data has not been fully utilized. In the student education system is an important asset for an educational institution and for that it is necessary to note the graduation rate of students on time. Differences in the ability of students to complete the study on time required the monitoring and evaluation, so that it can find new information or knowledge to make decisions. The purpose of this study, to know the relationship between IP variables Semester 1, IP Semester 2, IP Semester 3, IP Semester 4, Gender, Student Status on Student Study Duration using k-nearest neighbor algorithm. The result of this research in the classification of students' graduation using the knn algorithm based on student status, gender, ip semester 1 - ip semester 4 with k-fold cross validation in can mean value of K1 accuracy 88%, K3 accuracy 88.67%, K5 accuracy of 93.78%, K7 86% accuracy, K9 accuracy 86.22%, K11 accuracy 92.44%, K13 accuracy 89.55%, K15 accuracy 93.78%, K17 accuracy 99.78%, and K19 accuracy 100 %. Of the 500 training data in the status of 188 students, 312 students, the status of students work longer in completing the lecture and in the gender of 290 men, 210 women, then women longer in finishing college. Finding the optimal k value using k-fold cross validation.  The result of accuracy using k-fold cross validation is K19 with 100% accuracy

Keywords


classification; duration study; k-nearest neighbor

Full Text:

PDF

References


Kamagi, D.H. dan Hansun, S., 2014, Implementasi Data Mining Dengan Algoritma C4.5 Untuk

Memprediksi Tingkat Kelulusan Mahasiswa, Tanggerang.

Banjarsari, Mutiara A. 2015. Pencarian k-Optimal pada Algoritma KNN untuk prediksi Kelulusan

Tepat Waktu Mahasiswa Berdasarkan IP Sampai dengan Semester 4. FMIPA Unlam :

Banjarbaru.

Buku VI Matriks Penilaian Instrumen Akreditasi Program Studi Sarjana, Badan Akreditasi

Nasional Perguruan Tinggi, 2011.

Ginting, S.L.,.dkk.,2014, Teknik data mining untuk memprediksi masa studi mahasiswa

menggunakan algoritma K-Nearest Neighborhood, Volume 3, No.2.

Pramudiono, l., 2007. Pengantar Data Mining : Menambang Permata Pengetahuan di gunung

data.https://www.academia.edu/10378211/Kuliah_Pengantar_Data_Mining_Menambang_Per

mata_Pengetahuan_di_Gunung_Data, Diakses pada tanggal 15 September 2016

Gorunescu, Florin. 2011. Data Mining: Concepts, Models and Techniques. Computational

Intelligence and Complexity. (Verlag Berlin Heidelberg-Springer), Volume 12.pp. 1-43.

Rizal, Azwar. 2013. Perbandingan Performa antara Imputasi Metode Konvensional dan Imputasi

dengan Algoritma Mutual Nearest Neighbor. Jurusan Teknik Informatika, Fakultas Teknologi

Informasi, Institut Teknologi Sepuluh Nopember. Surabaya.

Pandie, Emerensye S. Y. 2012. Implemetasi Algoritma Data Mining K-Nearest Neighbor (KNN)

Dalam Pengambilan Keputusan Pengajuan Kredit. Jurusan Ilmu Komputer, Fakultas Sains

dan Teknik, Universitas Nusa Cendana : Kupang


Refbacks

  • There are currently no refbacks.


International Conference on Engineering and Technology Development (ICETD)
Bandar Lampung University
ISSN: 2301-5690