The Used of Video Tracking for Developing a Simple Virtual Boxing
Abstract
Keywords
References
H. Kato, M. Billinghurst, Marker Tracking and HMD Calibration for a video-based Augmented Reality Conferencing System. In Proceedings of the 2nd ed., International Workshop on Augmented Reality (IWAR 99). October, San Francisco, USA. 1999.
S. Kang, J. K. Paik, , A. Koschan, B. R. Abidi, and M. A. Abidi, Sixth International Conference on Quality Control by Artificial Vision. 2003, vol 5132, pp. 103-111.
V. Kettnaker and R. Zabih, Bayesian multi-camera surveillance. Journal Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Fort Collins, CO, 1999.
M. Greiffenhagen, D. Comaniciu, H. Niemann, and V. Ramesh, Design, analysis and engineering of video monitoring systems. Proceedings of the IEEE. 2001, vol 89(10).
R. Collins, A. Lipton, H. Fujiyoshi, and T. Kanade, Algorithms for cooperative multisensor surveillance. IEEE. 2001, vol. 89(10), pp. 1456–1477.
R. Collins, A. Lipton, H. Fujiyoshi, and T. Kanade, Algorithms for cooperative multisensor surveillance. IEEE. 2001, vol. 89(10), pp. 1456–1477.
I. Ferrari, t. Tuytelaars, and l. V. Gool, Real-time affine region tracking and coplanar grouping. Proc. IEEE conf. On computer vision and pattern recognition, Kauai, Hawaii. 2001, vol. II.
C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, Pfinder: Real-time tracking of the human body. IEEE Trans. Pattern Anal. Machine Intell. 1998, vol. 19, pp. 780–785.
A. Purushothaman, K. R. Shankarkumar, R. Rangarajan, and A. Kandasawam. Compressed Novel Way of Tracking Moving Objects
in Image and Video Scenes. European Journal of Scientific Research. 2011, Vol.64, No.3, pp. 353-360.
J. Alon, V. Athitsos, and S.Sclaroff, Accurate and Efficient Gesture Spotting via Pruning and Subgesture Reasoning. Boston U. Computer Science Tech. Report No. 2005-020. 2005.
K. Newlander, J. Goldstein dan J. Means, Video Change Detection and Tracking. Design, 2007.
S. Paris and F. Durand, A Topological Approach to Hierarchical Segmentation using Mean-shift. IEEEE Conference on Computer Vision and Pattern Recognition, 2007.
D. Comaniciu and P. Meer, Mean-shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002.
D. Comanicu, V. Ramesh, and dan P. Meer, Kernel-Based Object Tracking. Real-Time Vision and Modeling Department Siemens Corporate Research and Electrical and Computer engineering Department Rutgers University, 2003.
Y. Hayashi dan H. Fujiyoshi, Mean-Shift-Based Color Tracking in Illuminance Change. Proc. of ROBOCUP 2007 International Symposium, 2007.
R. Gordon, Boxing Basics: The Techniques and Knowledge Needed to Excel in the Sport of Boxing. 2008.
M. A. Carreira-Perpinan, Gaussian mean-shift is an EM algorithm, IEEE Trans Pattern Anal Mach Intell. 2007, 29(5), pp.767-76.
Refbacks
- There are currently no refbacks.
International Conference on Engineering and Technology Development (ICETD)
Bandar Lampung University
ISSN: 2301-5690