

Proceciing ICAID 2012

 The First International Confierence in Engineering and Technology Development

Universitas Bandar Lampung 20-21, June 2012
Lampung, Indonesia

PREFACE

The activities of the International Conference is in line and very appropriate with the vision and mission of the UBL, to promote training and education as well as research in these areas.

On behave of the First International Conference of Engineering and Technology Development (ICETD 2012) organizing committee; we are very pleased with the very good responses especially from the keynote speakers and from the participants. It is noteworthy to point out that about 45 technical papers were reccived for this conference

The participants of conference come from many well known universities, among others: Universitas Bandar Lampung, International Islamic University Malaysia, University Malaysia Trengganu, Nanyang Teclanological University, Curtin University of Technology Australia, University Putra Malaysia, Jamal Afohamed College India, ITB, Mercu Buana University, National University Malaysia, Surya Institute Jakarta, Diponogoro University, Unila, Universitas Malahayati, University Pelita Harapan, STIMIK Kristen Newmann, BPPT Lampung, Nurtanjo University Bandung, STIMIK Tarakanita, University Sultan Ageng Tirtayasa, and Pclita Bangsa.

I would tike to express my decgest gratitude to the International Advisory Board members, sponsors and also welcome to all keynote speakers and all participonts. I am also grateful to all organizing committec and all of the reviewers which contribute to the high standard of the conference. Also I would like to express my deepest gratitude to the Rector which give us endless support to these activities, such that the sonference can be administrated on time.

Bandar Lampung, 20 Juni 2012

Mustofa Usman, Ph.D
 ICETD Chairman

PROCEEDINGS
The First International Conference in Engineering and Technology Development (ICETD 2012)
UNIVERSITAS BANDAR LAMPUNG
Bandar Lampung, Indonesia June, 20-21 2012
Sterring Commite
Chairman
Mustofa Usman
Co-Chairman
Marzuki
Technical Committee
Ahmad Cucus
Agus Sukoco
Dina lka Wahyuningsih
Treasure
Maria Shusanti Febrianti
Committee Member
Indyah Kumoro
Fritz Akhmad Nuzir
Baginda Simaimban
Berry Salatar
Harpain
Yuthsi Aprilinda
Usman Rizal
Andala Rama P.Barusman
Yanuar Dwi Prasetyo
\section*{International Advisory Board}

Ahmad F. Ismail, Malaysia
Hon Wei Leong,Singapore Mustofa Usman, Indonesia Imad Khamis, USA
Moses L. Singih, Indonesia Y. M.Barusman, Indonesia Andreas Dress, Germany Rozlan Alias, Malaysia

Faiz A.M.Elfaki, Malaysia
Rudi Irawan, Indonesia Warsono, Indonesia Gusri Ibrahim, Indonesia Raihan Othman, Malaysia Jamal I Daoud, Malaysia Zeng Bing Zen, China
Riza Muhida, Indonesia

Tjin Swee Chuan, Singapor Heri Riyanto, Indonesia Khomsahrial R, Indonesia Agus Wahyudi, Indonesia
Rony Purba, Indonesia
Lilies Widojoko, Indonesis
Alex Tribuana S, Indonesii

Organizing Committee

Chair Person
Prof. DR. Khomsahrial Romli, M.Si

Vice Chair Person

Drs. Harpain, M.A.T., M.M

Secretary

Fritz Akhmad Nuzir, S.T., M.A
Ahmad Cucus, S.Kom., M.Kom

Treasure

Dian Agustina, S.E

Special Events

DR. Zulfi Diane Zaini, SH., MH
DR. Baginda Simaibang, M.Ed
Zainab Ompu Jainah, SH, MH
DR. Alex Tribuana S., ST., MM
Erlangga, S.Kom

Recepcionist

Berry Salatar, A.Md
Yanuar Dwi Prasetyo, S.Pd.I., M.A
Siti Rahma Wati, S.E
Ardiansyah, ST, MT
Sofie Islamia Ishar, S.T., M.T
Taqwan Thamrin, S.T., M.Sc

Transportation and Acomodation

Irawati, SE
Usman Rizal, S.T., MMSi
Hendri Dunan, S.E., M.M
Rifandi Ritonga, S.H
Desi Puspita Sari, S.E
Roby Yuli Endra, S.Kom
Tanto Lailam, S.H
Ilyas Sadad, S.T., M.T

Publication and Documentation

Ir. Indriati Agustina Gultom, M.M
Monica Mutiara Tinambunan, S.I.Kom., M.I.Kom
Noning Verawati, S.Sos
Hesti, S.H
Rifandi Ritonga, SH

Olivia Tjioener, S.E., M.M
Violita, S.I.Kom
\section*{Cosumption}
Dra. Yulfriwini, M.T
Dra. Agustuti Handayani, M.M
Susilowati, ST., MT
Wiwin Susanty, S.Kom
Reni Nursyanti, S.Kom
DR.Dra. Ida Farida, M.Si
Facility and Decoration
Zainal Abidin, SE
Ahyar Salch, SE
Eko Suhardiyanto
Dina Ika Wahyuningsih, A.Md
Wagino
Sugimin

Table Of Content

Orginizing Committee i
Table Of Content
Keynote Speaker

1. Zinc-Air Battery - Powering Electric Vehicles to Smart Active Labels Dr. Raihan Othman 1
2. Enhancing Heat Transper Using Nanofluids(abstract)
Prof. Ahmad Faris Ismail 6
3. Rapid Prototyping and Evaluation for Green Manufacturing RizaMuhida, Ph.D 7
4. Indonesia's Challenge to Combat Climate Change Using Clean Energy Rudi Irawan, Ph.D 12
5. Paraboloid-Ellipsoid Programming Problem
Prof.Dr. Ismail Bin Mohd 15
6. Model Development of Children Under Mortality Rate With Group Method of Data Handling
Dr. IingLukman 27
7. The Modified CW1 Algorithm For The Degree Restricted Minimum Spanning Tree Problem
Wamiliana, Ph.D 36
8. The Fibre Optic Sensor in Biomedical Engineering and Biophotonics Prof. TjinSweeChuan
Speaker
9. Web-Based Service Optimization with JSON-RPC Platform in Java and PHP WachyuHari Haji. 1
10. Trouble Ticketing System Based Standard ISO10002: 2004 To Improve Handling of Complaints Responsibility
Ahmad Cucus, Marzuki, AgusSukoco, Maria ShusantiFebrianti, Huda Budi Pamungkas 6
11. Design of Warehouse Management Application Tool for Controlling The Supply Chain Anita Ratnasari, Edi Kartawijaya 10
12. Development Of Decision Related Engine Using Integration Of Genetic Algorithm And Text Mining EvianaTjaturPutri, Mardalena, Asmah 15
13. Implementing CBR on The College Rankings Based on Webometrics with EPSBED's Data and Webometrics Knowledge
$1^{\text {st }}$ International Conference on Engineering and Technology DevelopmentFaculty od Engineering and Faculty of Computer Science
Marzuki, Maria Shusanti F, Ahmad Cucus , AgusSukoco 19
14. Paypal Analysis as e-Payment in The e-Business Development Nomi Br Sinulingga 24
15. Decision Support System for Determination of Employees Using Fuzzy Decision Tree Sinawaty\#1, YusniAmaliah 28
16. Analysis of Factors Influencing Consumer Behavior Bring Their Own Shopping Bag (Case Study KecamatanTembalang) Aries Susanty, DyahIkaRinawati, FairuzZakiah 33
17. The Use of Edge Coloring Concept for Solving The Time Schedule Problem at Senior High School (Case Study at SMAN 9 Bandarlampung) RahmanIndraKesuma, Wamiliana, MachudorYusman 41
18. Analysis Of Web-Education Based on ISO / IEC 9126-4 For The Measurement Of Quality Of Use
Marzuki, AgusSukoco, Ahmad Cucus, Maria ShusantiFebrianti, Lisa Devilia 46
19. The Used of Video Tracking for Developing a Simple Virtual Boxing David HabsaraHareva, Martin 55
20. M-Government as Solutions for E-Government problems in Indonesia Ahmad Cucus, Marzuki, AgusSukoco, Maria ShusantiFebrianti 60
21. Open Source ERP for SME Tristiyanto 65
22. Improvement in Performance of WLAN 802.11e Using Genetic Fuzzy Admission Control SetiyoBudiyanto 70
23. Cloud Computing: Current and Future
TaqwanThamrin, Marzuki, Reni Nursyanti, Andala Rama Putra 75
24. Implementing Information Technology, Information System And Its Application In Making The Blue Print for The One Stop Permission Services Sri AgustinaRumapea,HumuntalRumapea 80
25. Integration System Of Web Based And SMS Gateway For Information System Of Tracer Study EndykNoviyantono, Aidil 86
26. Fuzzy Logic Applied To Intelligent Traffic Light EndykNoviyantono, Muhammad 93
27. Solving and Modeling Ken-ken Puzzleby Using Hybrid Genetics Algorithm Olivia Johanna, Samuel Lukas, Kie Van IvankySaputra 98
28. GIS Habitat Based Models Spatial Analysis to Determine The Suitability Of Habitat For Elephants AgusSukoco 103
$1^{\text {st }}$ International Conference on Engineering and Technology Development
Universitas Bandar Lampung
Faculty od Engineering and Faculty of Computer Science
29. The Course Management System Workflow-Oriented to Control Admission and Academic Process Usman Rizal, YuthsiAprilinda 108
30. Fuzzy Graphs With Equal Fuzzy Domination And Independent Domination Numbers A.Nagoorgani, P. Vijayalakshmi 115
31. Solving Pixel Puzzle Using Rule-Based Techniques and Best First Search Dina Stefani, Arnold Aribowo, Kie Van IvankySaputra, Samuel Lukas 118
32. Capacity Needs for Public Safety Communication Use 700 MHz as Common Frequencyin Greater Jakarta Area SetiyoBudiyanto 125
33. Impact of Implementation Information Technology on Accounting Sarjito Surya. 132
34. Document Management System Based on Paperless WiwinSusanty, TaqwanThamrin, Erlangga, Ahmad Cucus 135
35. Traceability Part For Meter A14C5 In PT Mecoindo Of The Measurement Of Quality Of Use
Suratman, WahyuHadiKristanto, AsepSuprianto, MuhamadFatchan, DendyPramudito 139
36. Designing and Planning Tourism Park with Environment and Quality Vision and Information Technology-Based(Case Study: Natural Tourism Park Raman Dam) Fritz A. Nuzir, AgusSukoco, Alex T 149
37. Smart House Development Based On Microcontroller AVR-ATMEGA328 Haryansyah, Fitriansyah Ahmad, Hadriansa 157
38. Analyze The Characteristic of Rainfall and Intensity Duration Frequency (IDF) Curve at Lampung Province Susilowati 161
39. The Research of Four Sugarcane Variety (Saccharum officinarum) as The Raw Materials of Bioethanol Production in Negara Bumi Ilir Lampung M.C.Tri Atmodjo, Agus Eko T, Sigit Setiadi, Nurul Rusdi, Ngatinem JP, Rina, Melina, Agus Himawan 174
40. Design an Inverter for Residential Wind Generator Riza Muhida, Afzeri Tamsir, Rudi Irawan, Ahmad Firdaus A. Zaidi 177
41. The Research of Two Sugarcane Variety (Saccharum officinarum) as The Raw Materials of Bioethanol Production in Negara Bumi Ilir - Lampung M.C. Tri Atmodjo, Agus Eko T., Sigit Setiadi, Nurul Rusdi, Ngatinem JP, Rina, Melina, Agus H.182
42. Design of Plate Cutting Machine For Cane Cutter (Saccharum Oficinarum) Use Asetilin Gas
M,C, Tri Atmodjo , Tumpal O.R, Sigit D.Puspito 186
${ }^{\text {st }}$ International Conference on Engineering and Technology DevelopmentFaculty od Engineering and Faculty of Computer Science
43. Behaviour of Sandwiched Concrete Beam under Flexural Loading Firdaus, Rosidawani 191
44. Diesel Particulate Matter Distribution of DI Diesel Engine Using Tire Disposal Fuel Agung Sudrajad 196
45. Microstructure Alterations of Ti-6Al-4V ELI during Turning by Using Tungsten Carbide Inserts under Dry Cutting Condition Ibrahim, G.A. Arinal, H, Zulhanif, Haron, C.H.C 200
46. Validation Study of Simplified Soil Mechanics Method Design with Kentledge Pile Loading Test of Bored Pile Lilies Widojoko 204
47. Performance Assessment Tool for Transportation Infrastructure and Urban Development for Tourism Diana Lisa 211
48. Earthquake Resistant House Building Structure Ardiansyah 221

Paraboloid-Ellipsoid Programming Problem

Ismail Bin Mohd
Jabatan Matematik, Fakulti Sains dan Teknologi. Universiti Malaysia Terengganu

Mengabang Telipot, 21030 Kuala Terengganu, Malaysia

Abstract

In this paper, we discuss the state-of-the-art models in estimating, evaluating, and selecting among nonlinear mathematical models for obtaining the optimal solution of the optimization problems which involve the nonlinear functions in their constraints. We review theoretical and empirical issues including Newton's method, linear programming, quadratic programming, quadratically constrained programming, parabola, ellipse and the relation between parabola and ellipse. Finally, we outline our method called paraboloid-ellipsoid programming which is useful for solving economic forecasting and financial time-series with non-linear models.

Keywords : Parabola, Ellipse, Optimization, Algorithm

I. Introduction

In optimization, we select the best alternative(s) from a set of alternatives by using optimization approach according to well defined objective criteria. Mathematical techniques are used to search the variables that give the maximum or minimum of the objective function.

Optimization techniques are extremely important for management and design. The techniques by themselves do not guarantee that the optimal alternative will be selected. To ensure selection of the optimal alternative, it must be included in the set of available choice of methods.

The objective function explains the essential characteristics of what is to be optimized. The function combines the essential descriptive quantitative variables. The limits of the values of variable for each alternative can be expressed as constraints on the range of values that may be used by an optimal alternative. The maximum or minimum criteria are chosen by the nature of the variables and objectives, and for examples, costs are minimized, and profits are maximized.

The most frequently used methods for searching the optimum value of a mathematical function are
a. differential calculus
b. search methods
c. direct method
d. mathematical (linear and nonlinear) programming
e. classical matrix method
f. calculus of variation

g. Bellman's Dynamic programming

h. Pontryagin's maximum principle

In this paper, a new method so-called paraboloid-ellipsoid programming for solving the special type nonlinear programming problem will be proposed. However this new method can be extended or modified for solving the other types of problems. In order to understand how this new method is proposed, we orderly arranged all the materials in several sections as follows. In Section 2, we briefly provide an explanation about Newton's method to be used in this paper. Linear programming and quadratic programming will be described in Section 3 and Section 4 respectively. Section 5 contains one of the quadratic programming problem where its constraints consist of quadratic function and a set of linear system. In Section 6, we need to expose to the reader about the parabola in great detail, and this is very useful in solving the problem which involves the conics. We continue the explanation about the ellipse in Section 7. A new standard ellipse which plays an important rule in this paper, is described in Section 8. Our new method will be explained in Section 9 and some numerical results will be displayed in Section 10 where its computation is done by using the algorithm given in Section 11. Conclusion given in Section 12 will end our paper.

II. Newton's Method

Newton's method (or Newton-Raphson method) ([1]) defined by

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{2.1}
\end{equation*}
$$

$(n=0,1,2, \ldots)$,
is perhaps the best known method for searching successively better approximations to the zeros (or roots) of a real-valued function. Newton's method can often converge remarkably quickly, especially if the iteration (2.1) begins with x_{0} by "sufficiently closed" to the desired root.

1. Linear Programming

A linear programming (LP) problem ([2]) is one in which the objective and all of the constraints are linear functions of the decision variables.

Since all linear functions are convex, linear programming problems are intrinsically easier to solve than general nonlinear (NLP) problems, which may be non-convex. In a non-convex, NLP there may be more than one feasible region
and the optimal solution might be found at any point within any such region. In contrast, an LP has at most one feasible region with 'flat faces' (i.e. no curves) on its outer surface, and the optimal solution will always be found at a vertex (corner point) on the surface where the constraints intersect.

III. Quadratic Programming

A quadratic programming (QP) ([3]) which optimizes the quadratic objective subject to linear constraints, is widely used by the Markowitz mean-variance portfolio optimization problem, where the quadratic objective is the portfolio variance (sum of the variances and covariances of individual securities), and the linear constraints specify a lower bound for portfolio return.

If $x \in R^{n}$, the $\mathrm{n} \times \mathrm{n}$ matrix Q is symmetric, and c is any $\mathrm{n} \times 1$ vector then QP is the problem which minimize

$$
f(x)=\frac{1}{2} x^{T} Q x+c^{T} x
$$

subject to

$$
A x \leq b \text { and } E x=d
$$

where "T" indicates the vector transpose.
QP problems, like LP problems, have only one feasible region with "flat faces" on its surface (due to the linear constraints), but the optimal solution may be found anywhere within the region or on its surface. The quadratic objective function may be convex which makes the problem easy to solve or non-convex, which makes it very difficult to solve.

If Q is a positive semidefinite matrix, then $f(x)$ is a convex function ([4][5]). In this case the quadratic program has a global minimizer if there exists at least one vector x satisfying the constraints and $f(x)$ is bounded below on the feasible region. If the matrix Q is positive definite matrix, then this global minimizer is unique. Portfolio optimization problems are usually of this type. If Q is zero, then the problem becomes a linear program. From optimization theory, a necessary condition for a point x to be a global minimizer is for it to satisfy the Karush-Kuhn-Tucker (KKT) conditions. The KKT conditions are also sufficient when $f(\mathrm{x})$ is convex.

If there are only equality constraints, then the QP can be solved by a linear system. Otherwise, a variety of methods for solving the QP are commonly used, including interior point, active set, exploration, and conjugate gradient methods.

Convex quadratic programming is a special case of the more general field of convex optimization.

Complexity

For positive definite Q, the ellipsoid method solves the problem in polynomial time. If, on the other hand, Q is negative definite, then the problem is NP-hard ([5][6]). In
fact, even if Q has only one negative eigenvalue, the problem is NP-hard ([6][7]). If the objective function is purely quadratic, negative semidefinite and has fixed rank, then the problem can be solved in polynomial time ([8]).

IV. Quadratically Constrained Quadratic Programming

In mathematics, a quadratically constrained quadratic programming (QCQP) is the problem of optimizing a quadratic objective function of the decision variables, and subject to constraints which are quadratic and linear functions of the variables ([9]). The problem is to minimize

$$
\frac{1}{2} x^{T} P_{0} x+q_{0}^{T} x
$$

subject to

$$
\begin{array}{r}
x^{T} P_{i} x+q_{i}^{T} x+r_{i} \leq 0 \text { for } i=1, \ldots, m, \\
A x=b,
\end{array}
$$

where $P_{0}, \ldots P_{n}$ are nxn matrices and $x \in R^{n}$ is the optimization variable. If $P_{1}, \ldots P_{n}$ are all zero, then the constraints are in fact linear and the problem is a quadratic programming.

Hardness

Solving the general case is an NP-hard problem. To see this, note that the two constraints $x_{1}\left(x_{1}-1\right) \leq 0$ and $x_{1}\left(x_{1}-1\right)$ ≥ 0 are equivalent to the constraint $x_{1}\left(x_{1}-1\right)=0$, which is in turn equivalent to the constraint $x_{1} \in\{0,1\}$. Hence, any $\mathbf{0 - 1}$
integer programming (in which all variables have to be either 0 or 1) can be formulated as a quadratically constrained quadratic programming. But $0-1$ integer programming is NPhard, so QCQP is also NP-hard.

V. Parabola

Fig. 6.1 shows the parabola ([10][11]) having the equation $y=k x^{2}$ where $0<k<+\infty$. The focus and the directrix have the coordinates $(0,1 / 4 k)$ and the equation $y=-1 / 4 k$ respectively.

It can be shown that the line through $P\left(x_{1}, k x_{1}^{2}\right)$ parallel to the axis of the parabola intersects the directrix at the point $D\left(x_{1},-1 / 4 k\right)$. We also can show that the tangent at $P\left(x_{1}, k x_{1}^{2}\right)$ intersects the axis of the parabola at the point $Q\left(0,-k x_{1}^{2}\right)$, and finally we can prove that the quadrilateral $Q D P F$ is a (focal) rhombus.

Furthermore, the diagonals of this rhombus are perpendicular to each other and that they intersect at the point $\left(x_{1} / 2,0\right)$.

Fig. 6.1 : Parabola $y=k x^{2}$

VI. ELLIPSE

Fig. 7.1 shows us an ellipse ([12]) with some numerical dimensions where F_{1} and F_{2} are foci, L_{1} and L_{2} are directrices, a and b are major and minor axes of the ellips respectivey, and V_{1} and V_{2} are vertices of the ellipse. Both a and b are related in the form $b^{2}=a^{2}\left(1-e^{2}\right)$.

Th ellipse in Fig. 7.1 has the equation

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{7.1}
\end{equation*}
$$

In this paper, we are dealing with more general ellipse defined by

$$
\begin{equation*}
\frac{(x-p)^{2}}{a^{2}}+\frac{(y-q)^{2}}{b^{2}}=1 \tag{7.2}
\end{equation*}
$$

where (p, q) is its centre.

Ellipse Family

For our purpose, we ned to consider two types of ellipse family where the first family deals with $b<a$ and the second family deals with $a<b$. However, the most important thing to be coniderd in tis paper, is the ellipses which have a common tangent line to the ellips at the point $\left(-x_{1}, k x_{1}^{2}\right)$ where $(0<k<+\infty)$ and its gradient is $2 k x_{1}$.

The Common Tangent Line

Suppose that we have given an ellipse family shown in Fig. 7.2 where $a<b$. Clearly that the equation of ellipse I can be written as

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

The gradient of the ellipse at point $\left(-x_{1}, k x_{1}^{2}\right)$ is given by

$$
\frac{d y}{d x}=\frac{x_{1}}{k x_{1}^{2}} \frac{b^{2}}{a^{2}}
$$

Since we want this gradient is equal to $2 k x_{1}$ then we obtain

$$
b^{2}=2 k^{2} x_{1}^{2} a^{2}
$$

By substituting these b^{2} and $\left(-x_{1}, k x_{1}^{2}\right)$ into the equation of ellipse I, we then obtain the equation

$$
\frac{\left(-x_{1}\right)^{2}}{a^{2}}+\frac{\left(k x_{1}^{2}\right)^{2}}{2 k^{2} x_{1}^{2} a^{2}}=1
$$

which can be solved to give

$$
a^{2}=\frac{3}{2} x_{1}^{2} \text { and } b^{2}=3 k^{2} x_{1}^{4}
$$

Now our ellipse will have the following form

$$
\begin{equation*}
\frac{x^{2}}{\frac{3}{2} x_{1}^{2}}+\frac{y^{2}}{3 k^{2} x_{1}^{4}}=1 \tag{7.3}
\end{equation*}
$$

Y

Fig. 7.2 : An ellipse family
By similar way, the equation of ellipse $I I$ can be written by

$$
\begin{gather*}
\frac{\left(x+\frac{x_{1}}{2}\right)^{2}}{\frac{3}{8} x_{1}^{2}}+\frac{\left(y-\frac{k x_{1}^{2}}{2}\right)^{2}}{\frac{3}{4} k^{2} x_{1}^{4}}=1 \\
\frac{\left(x+\frac{x_{1}}{2}\right)^{2}}{\frac{3}{2} x_{1}^{2}}+\frac{\left(y-\frac{k x_{1}^{2}}{2}\right)^{2}}{3 k^{2} x_{1}^{4}}=\frac{1}{4} \tag{7.4}
\end{gather*}
$$

If we set $k=1, x_{1}=2$, then the equations (7.3) and (7.4) can be written as

$$
\frac{x^{2}}{6}+\frac{y^{2}}{48}=1
$$

(7.5) and

$$
\frac{(x+1)^{2}}{6}+\frac{(y-2)^{2}}{48}=\frac{1}{4}
$$

(7.6) respectively.

What we have observed that the points

$$
(0,0),\left(-\frac{x_{1}}{2}, \frac{k x_{1}^{2}}{2}\right),\left(-x_{1}, k x_{1}^{2}\right)
$$

are collinear.

VII. A NEw Standard Ellipse

In this section, we will introduce a new standard ellipse related to parabola $y=k x^{2}$ where $0<k<+\infty$ and its configuration is shown in Fig. 8.1.

$$
\begin{equation*}
y=k x^{2} \tag{X}
\end{equation*}
$$

Fig. 8.1 : A new standard ellipse

Suppose that the parabola $y=k x^{2}$ touches the ellipse I which has the equation

$$
\frac{(x-22)^{2}}{420}+\frac{y^{2}}{336}=1
$$

We would like to obtain an ellipse $I I$ which touches the xaxis and parabola at $(p, 0)$ and (2.4) repectively where its centre (p, b) is on the dash line

$$
5 y+x=22
$$

Clearly, the centre of this new ellipse can be computed as $(22-5 b, b)$. Furthermore, by some manipulation, for this ellipse, we obtain the equation

$$
\frac{(x-22+5 b)^{2}}{a^{2}}+\frac{(y-b)^{2}}{b^{2}}=1
$$

and by through some calculation we obtain

$$
a=\frac{21-\sqrt{21}}{\sqrt{20}} \text { and } b=\frac{21-\sqrt{21}}{5}
$$

Finally, we have

$$
\frac{(x-(1+\sqrt{21}))^{2}}{\frac{5}{4}\left(\frac{21-\sqrt{21}}{5}\right)^{2}}+\frac{\left(y-\frac{21-\sqrt{21}}{5}\right)^{2}}{\left(\frac{21-\sqrt{21}}{5}\right)^{2}}=1
$$

as the equation of the ellipse $I I$ so-called new ellipse standard.

VIII. Problem Statement

In this paper, we would like to develop two problems called paraboloid-ellipsoid programming problems which involve ellipse as an objective and parabola as its constraint. The first problem is defined as follows.

Minimize

(ICETD 2012)

Universitas Bandar Lampung
Faculty od Engineering and Faculty of Computer Science

$$
\begin{equation*}
z=\frac{(x-p)^{2}}{a^{2}}+\frac{(y-q)^{2}}{b^{2}} \tag{9.1}
\end{equation*}
$$

subject to

$$
\begin{equation*}
y-k x^{2} \geq 0, \text { and } x, y \geq 0 \tag{9.2}
\end{equation*}
$$

where its configuration is given by Fig. 9.1 and its feasible region is inside the prabola of the first quadrant.

The second problem is defined as follows.
Minimize
subject to

$$
\begin{equation*}
y-k x^{2} \leq 0 \tag{9.4}
\end{equation*}
$$

$x, y \geq 0$
where its configuration is given by Fig. 9.2 and its feasible region is outside the parabola of the first quadrant.

Now, we are showing how to obtain the minimizer of the paraboloid-ellipsoid programming problem. Off course, we know the ellipse and te parabola. Therefore by using their equations, we have the gradient of ellipse at point (x, y) as

$$
\begin{equation*}
\frac{d y}{d x}=-\beta \frac{(x-p)}{(y-q)} \tag{9.5}
\end{equation*}
$$

where $\beta=b^{2} / a^{2}$. Since any point on the parabola is of the form $\left(x, k x^{2}\right)$ and its gradient is given by $2 k x$, then for $\left(x_{1}, k x_{1}^{2}\right)$ we have
which can be simplified as
$2 k^{2} x_{1}^{3}-x_{1}(2 k q-\beta)-p \beta=0$
from which the value of x_{1} can be obtained.
If we substitute β by $1 / \beta$ with $\beta=a^{2} / b^{2}$, then we obtain
$2 \beta k^{2} x_{1}^{3}+x_{1}(1-2 \beta k q)-p=0$
(9.8)
Example 9.1
Suppose that $a^{2}=9, b^{2}=4, k=1, p=4$ and $q=3$. By using the above last formula we have

$$
9 x_{1}^{3}-25 x_{1}-8=0
$$

and when we solve to give $x_{1} \approx 1.809$. Accordingly we will get the minimizer and the vlue of the objective.

2. Algorithm of the PEP Problem

Suppose that we would like to minimize

$$
z=\frac{(x-p)^{2}}{a^{2}}+\frac{(y-q)^{2}}{b^{2}}
$$

subject to standard form
$4 \quad y-k x^{2} \geq 0(k>0)$ and $x, y \geq 0$
The algorithm to be used for solving the PEP problem is as follows.

Algorithm PEP

Data : p, q, k, max $\in \mathrm{R}, \quad \beta=a^{2} / b^{2}, \quad$ and $f\left(x_{1}\right)=2 \beta k^{2} x_{1}^{3}+x_{1}(1-2 \beta k q)-p$

1. $i=0$
2. while i < \max do
2.1. $f x_{i}=f\left(x_{i}\right)$
2.2. $f d x_{i}=f^{\prime}\left(x_{i}\right)$
2.3. $x_{i+1}=x_{i}-\frac{f x_{i}}{f d x_{i}}$
2.4. if x_{i+1} follows the Newton stopping criterium

then

2.4.1. stop

(ICETD 2012

Universitas Bandar Lampung
Faculty od Engineering and Faculty of Computer Science

else
 2.4.2. $\mathrm{i}=\mathrm{i}+1$

3. return.

3. Numerical Result

Our Algorithm PEP has been tested by using the following examples.

Example 11.1

For this example we have used $a^{2}=9, b^{2}=4, p=4, q=3$, and
 $2 \beta k^{2} x_{1}^{3}+x_{1}(1-2 \beta k q)-p=0$ for $k=1,2,3,0.5,0.25,0.1 . \quad$ Fig. $11.2:$ Variety of parabolas with different k

Fig. 11.3 : Relationship beteen parabolas and ellipses for Example 11.1.

IX. Discussion

The Algorithm PEP which based on Newton's method and the formula given by (9.8) can be used to obtain x_{1}, the solution of paraboloid-ellipsoid programming which happened at point $\left(x_{1}, k x_{1}^{2}\right)$.

By using (9.8) with $\beta=a^{2} / b^{2}$, we can obtain the centre point of new objective ellipse on x -axis given by

$$
\begin{equation*}
p=x_{1}+2 \beta k^{2} x_{1}^{2}=x_{1}\left(1+2 \beta k^{2} x_{1}\right) \tag{12.1}
\end{equation*}
$$

$\left(\beta=a^{2} / b^{2}\right)$
From (12.1) we have the following piece of programming.

1. if $\beta>1$

(ICETD 2012)

Universitas Bandar Lampung
Faculty od Engineering and Faculty of Computer Science

then

1.1. we have an ellipse with major and minor axis given by a and b respectively

else

1.2. we have an ellipse with major and minor axis given by b and a respectively

2. return.

X. Conclusion

We have shown that both parabola and ellipse have some relationship feastures which can be exploited for obtaining the solution(s) of the economic problems of the paraboloidellipsoid programming.

Although we can find this relationship percisely, we still use the approximated method (in this paper Newton's method) to obtain the solution, and therefore in order to obtain more precise result we need to seek the best criterium for stopping the routine in Newton's method.

Our method can be extended to the problem with more than one constraint and we prefer to explain in another paper.

ACKNOWLEDGEMENT

The author would like to express his gratitude to Ridwan Pandiya and Herlina Napitupulu for their assistance in the preparation of the manuscript. The author also extends his appreciation to the Universiti Malaysia Terengganu for their support in this research

REFERENCES

[1] http://en.wikipedia.org/Newton's method
[2] http://en.wikipedia.org/Linear programming
[3] http://en.wikipedia.org/Quadratic programming
[4] Kozlov, M.K.; Tarasov, S.P.; Khachiyan, L.G. "Polynomial solvability of convex quadratic programming," in Sov. Math., Dokl. 20, 1108-1111 (1979). This is a translation from Dokl. Akad. Nauk SSSR 248, 1049-1051 (1979). ISSN: 0197-6788.
[5] Sahni, S. "Computationally related problems," in SIAM Journal on Computing, 3, 262--279, 1974.
[6] Michael R. Garey and David S. Johnson (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman. ISBN 0-7167-1045-5. A6: MP2, pg. 245.
[7] Panos M. Pardalos and Stephen A., Quadratic programming with one negative eigenvalue is NP-hard, Vavasis in Journal of Global Optimization, Volume 1, Number 1, 1991, pg.15-22.
[8] Allemand, K. (Doctoral thesis 2496, 'Optimisation quadratique en variables binaires : heuristiques et cas polynomiaux'), Swiss Federal Institute of Technology, www.epfl.ch
[9] Stephen Boyd and Lieven Vandenberghe, Convex Optimization (book in pdf)
[10] Lockwood, E. H. "The Parabola." Ch. 1 in A Book of Curves. Cambridge, England: Cambridge University Press, pp. 2-12, 1967.
[11] Loomis, E. S. "The Parabola." $\S 2.5$ in The Pythagorean Proposition: Its Demonstrations Analyzed and Classified and Bibliography of Sources for Data of the Four Kinds of "Proofs," 2nd ed. Reston, VA: National Council of Teachers of Mathematics, pp. 25-28, 1968.
[12] Ralph, P. A., "Calculus : Analytic Geometry and Calculus, with Vector", New York, USA, McGraw-Hill, 1962.

