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Abstract— In this paper, we discuss the state-of-the-art 

models in estimating, evaluating, and selecting among non-

linear mathematical models for obtaining the optimal 

solution of the optimization problems which involve the 

nonlinear functions in their constraints. We review 

theoretical and empirical issues including Newton’s 

method, linear programming, quadratic programming, 

quadratically constrained programming, parabola, ellipse 

and the relation between parabola and ellipse. Finally, we 

outline our method called paraboloid-ellipsoid   

programming which is useful for solving economic 

forecasting and financial time-series with non-linear 

models.  
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I. INTRODUCTION 

     In optimization, we select the best alternative(s) from a set 

of alternatives by using optimization approach according to 

well defined objective criteria. Mathematical techniques are 

used to search the variables that give the maximum or 

minimum of the objective function. 

     Optimization techniques are extremely important for 

management and design. The techniques by themselves do not 

guarantee that the optimal alternative will be selected. To 

ensure selection of the optimal alternative, it must be included 

in the set of available choice of methods. 

     The objective function explains the essential characteristics 

of what is to be optimized. The function combines the 

essential descriptive quantitative variables. The limits of the 

values of variable for each alternative can be expressed as 

constraints on the range of values that may be used by an 

optimal alternative. The maximum or minimum criteria are 

chosen by the nature of the variables and objectives, and for 

examples, costs are minimized, and profits are maximized. 

     The most frequently used methods for searching the 

optimum value of a mathematical function are 

a. differential calculus                

b. search methods                    

c. direct method                        

d. mathematical (linear and nonlinear) programming       

e. classical matrix method 

f. calculus of variation 

g. Bellman's Dynamic programming 

h. Pontryagin's maximum principle 

     In this paper, a new method so-called paraboloid-ellipsoid 

programming for  solving the special type nonlinear 

programming problem will be proposed. However this new 

method can be extended or modified for solving the other 

types of problems. In order to understand how this new 

method is proposed, we orderly arranged all the materials in 

several sections as follows. In Section 2, we briefly provide an 

explanation about Newton’s method to be used in this paper. 

Linear programming and quadratic programming will be 

described in Section 3 and Section 4 respectively. Section 5 

contains one of the quadratic programming problem where its 

constraints consist of quadratic function and a set of linear 

system. In Section 6, we need to expose to the reader about 

the parabola in great detail, and this is very useful in solving 

the problem which involves the conics. We continue the 

explanation about the ellipse in Section 7. A new standard 

ellipse which plays an important rule in this paper, is 

described in Section 8. Our new method will be explained in 

Section 9 and some numerical results will be displayed in 

Section 10 where its computation is done by using the 

algorithm given in Section 11. Conclusion given in Section 12 

will end our paper. 

II. NEWTON’S METHOD 

     Newton's method (or Newton–Raphson method) ([1]) 

defined by 

                                                    
n

n 1 n

n

f(x )
x x

f '(x )

     

(n=0,1,2,…),                                 (2.1) 

is perhaps the best known method for searching successively 

better approximations to the zeros (or roots) of a real-valued 

function. Newton's method can often converge remarkably 

quickly, especially if the iteration (2.1) begins with x0 by 

"sufficiently closed"  to the desired root.  

1. Linear Programming 

     A linear programming (LP) problem ([2]) is one in which 

the objective and all of the constraints are linear functions of 

the decision variables.   

     Since all linear functions are convex, linear programming 

problems are intrinsically easier to solve than general 

nonlinear (NLP) problems, which may be non-convex. In a 

non-convex, NLP there may be more than one feasible region 
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and the optimal solution might be found at any point within 

any such region. In contrast, an LP has at most one feasible 

region with 'flat faces' (i.e. no curves) on its outer surface, and 

the optimal solution will always be found at a vertex (corner 

point) on the surface where the constraints intersect.  

III.  QUADRATIC PROGRAMMING 

     A quadratic programming (QP) ([3]) which optimizes the 

quadratic objective subject to linear constraints, is widely used 

by the Markowitz mean-variance portfolio optimization 

problem, where the quadratic objective is the portfolio 

variance (sum of the variances and covariances of individual 

securities), and the linear constraints specify a lower bound 

for portfolio return. 

     If 
nx R , the n×n matrix Q is symmetric, and c is any 

n×1 vector then QP is the problem which minimize 

1
( )

2

T Tf x x Qx c x   

subject to  

Ax b  and Ex d  

where “
T
” indicates the vector transpose.  

     QP problems, like LP problems, have only one feasible 

region with "flat faces" on its surface (due to the linear 

constraints), but the optimal solution may be found anywhere 

within the region or on its surface.  The quadratic objective 

function may be convex which makes the problem easy to 

solve or non-convex, which makes it very difficult to solve. 

     If Q is a positive semidefinite matrix, then f(x) is a 

convex function ([4][5]). In this case the quadratic program 

has a global minimizer if there exists at least one vector x 

satisfying the constraints and f(x) is bounded below on the 

feasible region. If the matrix Q is positive definite matrix, 

then this global minimizer is unique. Portfolio optimization 

problems are usually of this type. If Q is zero, then the 

problem becomes a linear program. From optimization 

theory, a necessary condition for a point x to be a global 

minimizer is for it to satisfy the Karush-Kuhn-Tucker 

(KKT) conditions. The KKT conditions are also sufficient 

when f(x) is convex. 

     If there are only equality constraints, then the QP can be 

solved by a linear system. Otherwise, a variety of methods 

for solving the QP are commonly used, including interior 

point, active set, exploration, and conjugate gradient 

methods. 

     Convex quadratic programming is a special case of the 

more general field of convex optimization. 

Complexity 

     For positive definite Q, the ellipsoid method solves the 

problem in polynomial time. If, on the other hand, Q is 

negative definite, then the problem is NP-hard ([5][6]). In 

fact, even if Q has only one negative eigenvalue, the problem 

is NP-hard ([6][7]). If the objective function is purely 

quadratic, negative semidefinite and has fixed rank, then the 

problem can be solved in polynomial time ([8]). 

IV.  QUADRATICALLY CONSTRAINED QUADRATIC 

PROGRAMMING 

     In mathematics, a quadratically constrained quadratic 

programming (QCQP) is the problem of optimizing a 

quadratic objective function of the decision variables, and 

subject to constraints which are quadratic and linear functions 

of the variables ([9]). The problem is to minimize 

0 0

1

2

T Tx P x q x  

subject to 

0T T

i i ix Px q x r      for 1,...,i m , 

                                                            Ax b , 

where P0, … Pn are nxn matrices and 
nx R  is the 

optimization variable. If P1, … Pn are all zero, then the 

constraints are in fact linear and the problem is a quadratic 

programming.  

Hardness 

     Solving the general case is an NP-hard problem. To see 

this, note that the two constraints x1(x1 − 1) ≤ 0 and x1(x1 − 1) 

≥ 0 are equivalent to the constraint x1(x1 − 1) = 0, which is in 

turn equivalent to the constraint 1 {0,1}x  . Hence, any 0-1 

integer programming (in which all variables have to be 

either 0 or 1) can be formulated as a quadratically constrained 

quadratic programming. But 0–1 integer programming is NP-

hard, so QCQP is also NP-hard. 

V.  PARABOLA 

     Fig. 6.1 shows the parabola ([10][11]) having the equation 
2kxy   where  k0 . The focus and the directrix 

have the coordinates  k4/1,0  and the equation 

ky 4/1  respectively.     

     It can be shown that the line through  2

11,kxxP  parallel 

to the axis of the parabola intersects the directrix at the point 

 kxD 4/1,1  . We also can show that the tangent at 

 2

11, kxxP  intersects the axis of the parabola at the point 

 2

1,0 kxQ  , and finally we can prove that the quadrilateral 

QDPF is a (focal) rhombus. 

     Furthermore, the diagonals of this rhombus are 

perpendicular to each other and that they intersect at the point 

 0,2/1x .     
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Fig. 6.1 : Parabola 
2kxy 

 

VI.  ELLIPSE 

     Fig. 7.1 shows us an ellipse ([12]) with some numerical 

dimensions where 1F  and 2F  are foci, 1L  and 2L  are 

directrices, a  and b  are major and minor axes of the ellips 

respectivey, and 1V  and 2V  are vertices of the ellipse. Both 

a  and b  are related in the form  222 1 eab  . 

                                        1L                 a             b       a              

2L  

                               1V
                                                                       

2V  

                            

                                       
                     

                                                     

                                   1F                                                                        

2F  

 

                                                     a                         ae                 

                                                                                      ea /   

                         Fig. 7.1 : A standard ellipe 

 

     Th ellipse in Fig. 7.1 has the equation 

                                                                 1
2

2

2

2


b

y

a

x
                                                        

(7.1) 

In this paper, we are dealing with more general ellipse defined 

by 

                                                         

   
1

2

2

2

2







b

qy

a

px
                                               (7.2) 

where  qp,  is its centre.  

Ellipse Family 

     For our purpose, we ned to consider two types of ellipse 

family where the first family deals with ab  and the 

second family deals with ba  . However, the most 

important thing to be coniderd in tis paper, is the ellipses 

which have a common tangent line to the ellips at the point 

 2

11, kxx  where   k0  and its gradient is 12kx . 

The Common Tangent Line 

     Suppose that we have given an ellipse family shown in Fig. 

7.2 where ba  . Clearly that the equation of ellipse I can 

be written as  

1
2

2

2

2


b

y

a

x
.  

The gradient of the ellipse at point  2

11, kxx  is given by 

2

2

2

1

1

a

b

kx

x

dx

dy
 . 

Since we want this gradient is equal to 12kx  then we obtain 

22

1

22 2 axkb  . 

By substituting these 
2b  and  2

11, kxx
 
into the equation of 

ellipse I , we then obtain the equation 

   
1

2 22

1

2

22

1

2

2

1 


axk

kx

a

x
 

which can be solved to give 

2

1

2

2

3
xa   and 

4

1

22 3 xkb  . 

Now our ellipse will have the following form 

     

 

 

                                                       

1
3

2

3 4

1

2

2

2

1

2


xk

y

x

x
.                                                    

(7.3) 
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Fig. 7.2 : An ellipse family 

     By similar way, the equation of ellipse II can be written 

by 

                            1

4

3

2
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                  (7.4) 

If we set ,1k  21 x , then the equations (7.3) and (7.4) 

can be written as 

                                                                

1
486

22


yx

                                                      

(7.5) and 

                                                       
   

4

1

48

2

6

1
22





 yx

.                                               

(7.6) respectively. 

     What we have observed that the points  

 0,0 , 









2
,

2

2

11 kxx
,  2

11, kxx   

are collinear. 

VII.  A NEW STANDARD ELLIPSE  

     In this section, we will introduce a new standard ellipse 

related to parabola 
2kxy   where  k0 and its 

configuration is shown in Fig. 8.1.                                                

                                                    Y 

                                                               II           I  

                   
2kxy                                                      

                                                                                              X            

                                          

                              
 4.2                                                    

 0.22                                                   

Fig. 8.1 : A new standard ellipse 

     Suppose that the parabola 
2kxy   touches the ellipse I

which has the equation 

 
1

336420

22 22


 yx

 

     We would like to obtain an ellipse II which touches the x-

axis and parabola at  0,p  and  4.2  repectively where its 

centre  bp,  is on the dash line 

225  xy . 

Clearly, the centre of this new ellipse can be computed as 

 bb,522  . Furthermore, by some manipulation, for this 

ellipse, we obtain the equation 

   
1

522
2

2

2

2







b

by

a

bx
 

and by through some calculation we obtain 

20

2121
a  and 

5

2121
b , 

Finally, we have 

  
1

5

2121

5

2121

5

2121

4

5

211
2

2

2

2















 













 
















 


y

x
 

as the equation of the ellipse II so-called new ellipse 

standard. 

VIII. PROBLEM STATEMENT 

     In this paper, we would like to develop two problems 

called paraboloid-ellipsoid programming problems which 

involve ellipse as an objective and parabola as its constraint. 

The first problem is defined as follows. 

     Minimize 
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2

2

2

2

b

qy

a

px
z





                                                 

(9.1) 

subject to 

                                                     
02  kxy , and 0, yx                                              

(9.2) 

where its configuration is given by Fig. 9.1 and its feasible 

region is inside the prabola of the first quadrant.                                                    

                                                              Y                    

                                                                       

                                                                                           X            

Fig. 9.1 : The first problem 

The second problem is defined as follows. 

     Minimize 

                                                      

   
2

2

2

2

b

qy

a

px
z





                                                 

(9.3) 

subject to 

                                                     
02  kxy , and 

0, yx                                              (9.4) 

where its configuration is given by Fig. 9.2 and its feasible 

region is outside the parabola of the first quadrant.                                                    

                                                          Y                    

                                                                       

                                                                                           X            

Fig. 9.2 : The second problem 

     Now, we are showing how to obtain the minimizer of the 

paraboloid-ellipsoid programming problem. Off course, we 

know the ellipse and te parabola. Therefore by using their 

equations, we have the gradient of ellipse at point  yx,  as 

                                                       

 
 qy

px

dx

dy




                                                           

(9.5) 

where 
22 / ab . Since any point on the parabola is of the 

form  2,kxx  and its gradient is given by kx2 , then for 

 2

11,kxx  we have 

                                                         

 
  12

1

1 2kx
qkx

px





                                                   

(9.6) 

which can be simplified as 

                                                   

  022 1

3

1

2   pkqxxk                                          

(9.7) 

from which the value of 1x  can be obtained. 

     If we substitute   by /1  with 
22 /ba , then we 

obtain 

                                                 

  0212 1

3

1

2  pkqxxk                                           

(9.8) 

Example 9.1 

     Suppose that 92 a , 42 b , 1k , 4p  and 3q
. By using the above last formula we have 

08259 1

3

1  xx  

and when we solve to give 809.11 x . Accordingly we will 

get the minimizer and the vlue of the objective. 

2. Algorithm of the PEP Problem 

     Suppose that we would like to minimize 

   
2

2

2

2

b

qy

a

px
z





  

subject to standard form 

02  kxy   0k and 0, yx  

     The algorithm to be used for solving the PEP problem is as 

follows. 

Algorithm PEP 

Data : p, q, k, max  R, 
22 /ba , and 

    pkqxxkxf   212 1

3

1

2

1  

1. i = 0 

2. while i < max do 

    2.1.  ii xffx   

    2.2.  ii xffdx '  

    2.3. 

i

i
ii

fdx

fx
xx 1  

    2.4. if 1ix  follows the Newton stopping criterium 

           then 

           2.4.1. stop 
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           else 

           2.4.2. i = i+1  

3. return. 

3.  Numerical Result 

Our Algorithm PEP has been tested by using the 

following examples. 

Example 11.1 

     For this example we have used 92 a , 42 b , 4p , 3q , and 4/9  for computing 1x  using 

  0212 1

3

1

2  pkqxxk  for ,1k  2 , 3 , 5.0 , 25.0 , 1.0 .  

k  1 2  3  5.0  25.0  1.0  

1x  809.1  272433.1  039729.1  550521784.2  53152426.3  090947160.5  

2

1x
 

272481.3  620358422.1  070754955.1  505161371.6  471666.12  41114827.25  

1y  272481.3  240716845.3  212264864.3  25258685.3  1179159.3  541114827.2  

z
 1z  2z  3z  

4z  5z  6z  

z  = (0.5519456686, 0.8408060509, 0.9882165103,0.2493922617,0.02786154196, 0.1730406772) 

 

     The Fig.s of all ellipses listed in Example 11.1 are drawn in Fig. 11.1 

where their radii are given by vector z .  

 

Fig. 11.1 : Variety of ellipse with different radius 

     The Fig.s of all parabolas listed in Example 11.1 are drawn in Fig. 11.2 

where their k’s are given by k’s row. 

 

Fig. 11.2 : Variety of parabolas with different k 

     The relationship between objective functions and their 

constrints for Example 11.1 are drawn in Fig. 11.3. 

 

Fig. 11.3 : Relationship beteen parabolas and ellipses for Example 11.1. 

IX. DISCUSSION 

     The Algorithm PEP which based on Newton’s method and 

the formula given by (9.8) can be used to obtain 1x , the 

solution of paraboloid-ellipsoid programming which happened 

at point  2

11,kxx .  

     By using (9.8) with 
22 /ba , we can obtain the centre 

point of new objective ellipse on x-axis given by 

                                   
 1

2

1

2

1

2

1 212 xkxxkxp       

)/( 22 ba                            (12.1)  

From (12.1) we have the following piece of programming. 

1. if 1  



1st International Conference on Engineering and Technology Development ISSN 2301-6590 
(ICETD 2012) 
Universitas Bandar Lampung  
Faculty od Engineering and Faculty of Computer Science 

26 
 

    then 

    1.1. we have an ellipse with major and minor axis given by 

a and b respectively 

    else 

    1.2. we have an ellipse with major and minor axis given by 

b and a respectively 

2. return. 

X. CONCLUSION 

     We have shown that both parabola and ellipse have some 

relationship feastures which can be exploited for obtaining the 

solution(s) of the economic problems of the paraboloid-

ellipsoid programming.  

     Although we can find this relationship percisely, we still 

use the approximated method (in this paper Newton’s method) 

to obtain the solution, and therefore in order to obtain more 

precise result we need to seek the best criterium for stopping 

the routine in Newton’s method.  

     Our method can be extended to the problem with more 

than one constraint and we prefer to explain in another paper. 
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