## PROCEEDINGS.

ISSN: 2301 - 5690

## International Conference on Engineering and Technology Development



# 3<sup>rd</sup>ICETD 2014

28, 29 October 2014, Bandar Lampung, Indonesia

### Hosted By:

Faculty of Engineering and Faculty of Computer Science
Bandar Lampung University, Indonesia









# 3<sup>rd</sup> ICETD 2014

## THE THIRD INTERNATIONAL CONFERENCE ON ENGINEERING AND TECHNOLOGY DEVELOPMENT

28 -29 October2014 Bandar Lampung University (UBL) Lampung, Indonesia

## **PROCEEDINGS**

Organized by:



Faculty of Computer Science and Faculty of Engineering
Bandar Lampung University (UBL)

Jl. Zainal Abidin Pagar Alam No.26 Labuhan Ratu, Bandar Lampung, Indonesia
Phone: +62 721 36 666 25, Fax: +62 721 701 467

website:www.ubl.ac.id

#### **PREFACE**

The Activities of the International Conference is in line and very appropriate with the vision and mission of Bandar Lampung University (UBL) to promote training and education as well as research in these areas.

On behalf of the Second International Conference on Engineering and Technology Development (3<sup>rd</sup> ICETD 2014) organizing committee, we are very pleased with the very good response especially from the keynote speaker and from the participans. It is noteworthy to point out that about 80 technical papers were received for this conference.

The participants of the conference come from many well known universities, among others: University Kebangsaan Malaysia – Malaysia, IEEE – Indonesia, Institut Teknologi sepuluh November – Indonesia, Surya Institute – Indonesia, International Islamic University – Malaysia, STMIK Mitra Lampung – lampung, Bandung Institut of Technology – Bandung, Lecture of The Malahayati University, B2TP – BPPT Researcher – lampung, University of Kitakyushu – Japan, Gadjah Mada University – Indonesia, Universitas Malahayati – Lampung, Lampung University – lampung,

I would like to express my deepest gratitude to the International Advisory Board members, sponsor and also to all keynote speakers and all participants. I am also gratefull to all organizing committee and all of the reviewers who contribute to the high standard of the conference. Also I would like to express my deepest gratitude to the Rector of Bandar Lampung University (UBL) who give us endless support to these activities, so that the conference can be administrated on time

Bandar Lampung, 22 October 2014

Mustofa Usman, Ph.D 3<sup>rd</sup> ICETD Chairman

## **PROCEEDINGS**

### 3rd ICETD 2014

The Third International Conference On Engineering And Technology Development

#### 28 -29 October 2014

#### INTERNATIONAL ADVISORY BOARD

Y. M Barusman, Indonesia

Ahmad F. Ismail, Malaysia

Mustofa Usman, Indonesia

Moses L. Singgih, Indonesia

Andreas Dress, Germany

Faiz A.M Elfaki, Malaysia

Warsono, Indonesia

Raihan Othman, Malaysia

Zeng Bing Zen, China

Tjin Swee Chuan, Singapore

Khomsahrial R, Indonesia

Rony Purba, Indonesia

Hon Wei Leong, Singapore

Imad Khamis, USA

Rozlan Alias, Malaysia

Rudi Irawan, Indonesia

Gusri Ibrahim, Indonesia

Jamal I Daoud, Malaysia

Riza Muhida, Indonesia

Heri Riyanto, Indonesia

Agus Wahyudi, Indonesia

## **PROCEEDINGS**

## 3<sup>rd</sup> ICETD 2014

The Third International Conference On Engineering And Technology Development

28 -29 October 2014

#### STEERING COMMITTEE

#### **Executive Advisors**

Dr. M. Yusuf S. Barusman Andala R. P. Barusman, MA.Ec

#### Chairman

Mustofa Usman, Ph.D

#### Co-Chairman

Dr. Ir. Hery Riyanto, MT Ahmad Cucus, S.Kom., M.Kom

#### Secretary

Yuthsi Aprilinda S.Kom., M.Kom Marzuki, S.Kom., M.Kom Maria Shusanti Febrianti, S.Kom., M.Kom

#### **Technical Committee**

Robby Yuli Endra, S.Kom., M.Kom Sofiah Islamiah, ST. MT Fenty Ariani, S.Kom., M.Kom Taqwan Thamrin, ST., MSc Dina Ika Wahyuningsih, S.Kom Agus Sukoco, M.Kom Hj. Susilowati, ST. MT Haris Murwadi, ST, MT

#### Treasure

Samsul Bahri, SE Dian Agustina, SE

## **PROCEEDINGS**

## 3<sup>rd</sup> ICETD 2014

The Third International Conference On Engineering And Technology Development

28 -29 October 2014

#### ORGANIZING COMMITTEE

#### Chair Person

Dr. Ir. Hery Riyanto, MT

#### Vice Chair Person

Ahmad Cucus, S.Kom., M.Kom

#### Treasure

Dian Agustina, S.E

#### Secretary

Robby Yuli Endra, S.Kom., M.Kom Sofia Islamiah Izhar, S.T., M.T. Taqwan Thamrin, ST., MSc Erlangga, S.Kom., M.Kom Iwan Purwanto S.Kom., MTI

#### **Special Events**

Agus Sukoco, M.Kom Dra. Yulfriwini, M.T. Ir. Juniardi, MT Ir. Najamudin, MT Kunarto, ST. MT IB. Ilham Malik, ST. MT Ir.A Ikhsan Karim, MT Usman Rizal, ST., M.MSi Ir. Sugito, MT Berry Salatar, S.Pd Ayu Kartika Puspa S.Kom., MTI. Helta Anggia S.Pd., MA Yanuarius Yanu Darmawan SS. M.Hum

#### Receiptionist

Indyah Kumoro K.W., S.T., IAI. Haris Murwadi, S.T., M.T.

#### Transportation and Acomodation

Irawati, SE Desi Puspita Sari, S.E Ifa Ditta, S.E., S.T.P Riffandi Ritonga, S.H.

#### **Publication and Documentation**

Ir. Indriati Agustina Gultom, M.M Noning Verawati, S.Sos Hesti, S.H Masitoh S.Sos

#### Cosumption

Susilowati, S.T., M.T Yuthsi Aprilinda S.Kom., M.Kom Maria Shusanti Febrianti, S.Kom.,M.Kom Fenty Ariani, S.Kom., M.Kom Reni Nursyanti, S.Kom., M.Kom Sundari, S.Kom

#### **Facility and Decoration**

Siti Rahma Wati, S.E.

Dina Ika Wahyuningsih, S.Kom.
Arnes Yuli Vandika, S.Kom, M.Kom.

Zainal Abidin, S.E.

Ahyar Saleh, S.E.

Eko Suhardiyanto

Wagino

Sugimin

## **Table Of Content**

| No | Title                                                                                                                                        | Author                                                                                                                             | Page  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1  | The Influence Of Implementing Information<br>Technology On Knowledge Management Toward<br>Performance Evaluation Using Balanced<br>Scorecard | Sarjito Surya                                                                                                                      | 1-3   |
| 2  | Implementation Of Customer Relationship<br>Management (Crm) To Automate Logging Track<br>Record<br>Students And Alumni                       | Robby Yuli Endra <sup>#1</sup><br>Fenti Aryani <sup>*2</sup><br>Septiany Dian Puspita <sup>#3</sup><br>Ade Kurniawan <sup>*4</sup> | 4-10  |
| 3  | Prototype Model Classification System Level<br>Internal Audit Findings Based On Case-Based<br>Reasoning In Education Quality Management      | Marzuki <sup>#1</sup><br>Maria Shusanti<br>Febrianti <sup>*2</sup>                                                                 | 11-13 |
| 4  | Implementation Case Based Reasoning In<br>Determining The Rational Prescription Of Tb<br>Drugs                                               | Ahmad Cucus                                                                                                                        | 14-19 |
| 5  | Implementation Of Workflow Management System<br>On E-Learning Platform For The Effectiveness Of<br>Distance Learning                         | Yuthsi Aprilinda <sup>#1</sup><br>Agus Sukoco <sup>*2</sup><br>Ahmad Cucus <sup>#3</sup>                                           | 20-25 |
| 6  | Thermal Bioclimate For Tourism:<br>Case Study Of Kuta, Bali Province, Indonesia                                                              | Nyoman Sugiartha <sup>#1</sup><br>Andreas Matzarakis <sup>#2</sup>                                                                 | 26-32 |
| 7  | Minimum System Design Of Android Based Pstn<br>Phone                                                                                         | Deo Kiatama <sup>#1</sup><br>Fransiscus Ati Halim <sup>*2</sup><br>Arnold Aribowo <sup>#3</sup>                                    | 33-38 |
| 8  | The Design Of Pressing Equipment For<br>Banana Fruit                                                                                         | M.C. Tri Atmodjo                                                                                                                   | 39-44 |
| 9  | Modelling Supply Chain Management In B2b<br>E-Commerce Systems                                                                               | ldris Asmuni                                                                                                                       | 45-51 |
| 10 | Extreme Programming Study Method Case Study<br>On Designing Of Accounting Term Dictionary                                                    | Usman Ependi <sup>#1</sup><br>Qoriani Widayati <sup>*2</sup>                                                                       | 52-55 |
| 11 | Review On Economic Valuation Of Solid Waste<br>Management In<br>Bandar Lampung, Lampung                                                      | ling Lukman #1,<br>Diah Ayu Wulandari<br>Sulistyaningrum *2,<br>Taqwan Thamrin #3                                                  | 56-57 |

| No | Title                                                                                                                                             | Author                                                                                                     | Page    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------|
| 12 | Prototype Topology Sdn For Simple Network<br>Campus                                                                                               | Arnesyulivandika                                                                                           | 58-61   |
| 13 | Tsunami Force On A Building With Sea Wall                                                                                                         | Any Nurhasanah <sup>#1</sup><br>Nizam <sup>*2</sup><br>Radianta Triatmadja <sup>#3</sup>                   | 62-64   |
| 14 | Analysis The Quality Of Website<br>Service Information System Academic Integrated<br>( Siater )<br>Bandar Lampung University Using Pieces Methods | Yusinta Ria Disanda                                                                                        | 65-71   |
| 15 | Organize Bad Manual Financial Database Of<br>Educational Organization<br>By Bank To Decrease Financial Criminalize                                | Ruri Koesliandana <sup>#1</sup><br>Eka Imama Novita Sari <sup>*2</sup><br>Arnes Yuli Vandika <sup>#3</sup> | 72-74   |
| 16 | Design Of Lampung Bay Waterfront Using<br>Poetic Architecture Approach                                                                            | Shofia Islamia Ishar,<br>S.T.,M.T.<br>Muhammad Syahroni,<br>S.T.                                           | 75-83   |
| 17 | Analysis Limiting Internet Sites With The Method<br>Using<br>Squid Proxy Server At Smkn 1 South Rawajitu                                          | Reni Tri Astuti                                                                                            | 83-88   |
| 18 | Effect Of Grading On Differences Using Mixed<br>Concrete Aggregate Rough And Fine Aggregate<br>Concrete Compressive Strength Of Natural           | Yulfriwini                                                                                                 | 89-97   |
| 19 | Analysis Quality Dino Tour Travel<br>Management Website Using Webqual 4.0                                                                         | Rola Hengki                                                                                                | 98-105  |
| 20 | Holonic Manufacturing System:<br>Current Development And Future Applications                                                                      | Moses Laksono Singgih                                                                                      | 106-113 |
| 21 | An Analysis Perspective Implemented Text<br>Mining Analytics Information Extraction For<br>Impect Of Indonesian Social Media                      | Agus Suryana.Mti <sup>#1</sup><br>Sri Ipnuwati.M.Kom <sup>*2</sup>                                         | 114-123 |
| 22 | Study Of Gold Mine Tailings Utilization As Fine<br>Aggregate Material For<br>Producing Shotcrete Based On Concept Of Green<br>Technology          | Lilies Widojoko <sup>l)</sup><br>Harianto<br>Hardjasaputra <sup>2)</sup><br>Susilowati <sup>3)</sup>       | 124-133 |

| No | Title                                                                                                                 | Author                                                                                                | Page      |
|----|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------|
| 23 | Decision Support System For Determined<br>Recomendations Lecturer Teaching Handbook<br>Using<br>Fuzzy                 | Usman Rizal <sup>#1</sup><br>Fenti Aryani <sup>*2</sup>                                               | 134-140   |
| 24 | The Expert System Software Application On<br>Lecture<br>Scheduling Based On Rule<br>Based Reasoning                   | Taqwan Thamrin <sup>#1</sup><br>Ahmad Cucus <sup>*2</sup><br>Adi Wijaya <sup>#3</sup>                 | 141-144   |
| 25 | Portal Website Analysis Using Iso / Iec 9126-4<br>Metric Effectiveness<br>(Case Study Indonesia Wi-Fi Portal Website) | Refky Jumrotuhuda                                                                                     | 145-149   |
| 26 | Student Satisfaction Analysis Of<br>Siater Using End User Computing<br>Statisfaction (Eucs)                           | Erlangga, Jefri Krisna<br>Putra                                                                       | 150-155   |
| 27 | Urban Tourism Development<br>Through Low Impact Development (Lid) Towards<br>Green-Tourism                            | *1ir. Wiwik<br>Setyaningsih, Mt<br>*2tri Yuni Iswati, St.,<br>Mt,<br>*2sri Yuliani, St.,<br>M.App.Sc. | 156-161   |
| 28 | Hawkers Empowerment Strategy To Promote<br>Sustainable Economy In Surakarta                                           | Murtantijanirahayu<br>Rufiaandisetyanaputri                                                           | 162-172   |
| 29 | New Urbanism: A Comparative Analysis<br>Between Traditional Village And Housing<br>Estate                             | Bhakti Alamsyah                                                                                       | 173-179   |
| 30 | Traditional Market Revitalization As An Urban<br>Catalyst In The City Of Surakarta                                    | lstijabatul Aliyah #1,<br>Bambang Setioko #2,<br>Wisnu Pradoto #3                                     | 180-188   |
| 31 | The Robinson Mall Impact On Fv And Ds In<br>Zapa Street, Bandar Lampung City                                          | Ida Bagus Ilham Malik<br>Ilyas Sadad                                                                  | 189-195   |
| 32 | Decision Support System For Mall Nutrition Using<br>Simple Additive Weighting (Saw) Method                            | Reni Nursyanti<br>Mujiasih                                                                            | 196-200   |
| 33 | Effect Of Cement Composition In Lampung On<br>Concrete Strength                                                       | Heri Riyanto                                                                                          | 201 – 204 |

| Na | Title                                                                                                                | Author                                                 | Page      |
|----|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------|
| 34 | E-Archive digital storage media                                                                                      | Arnes yuli vandika, ade<br>kurniawan, ari<br>kurniawan | 205 -207  |
| 35 | Virtualization Technology for Optimizing Server<br>Resource Usage                                                    | Edwar Ali, Didik<br>Sudyana                            | 208 – 212 |
| 36 | Decision Support System (DSS) For The<br>Determination Of Percentage Of Scholarship<br>Quantity Based Fuzzy Tahani   | Robby Yuli Endra #1,<br>Agus Sukoco #2                 | 213 -223  |
| 37 | Evaluation of Pedestrian Way's Comfort<br>Case Study: Jl. Z. A. Pagar Alam, Bandar Lampung                           | Haris Murwadi 1*, Fritz<br>Akhmad Nuzir 2              | 224 - 228 |
| 38 | Modification Effect Of Volume Cylinder<br>Four Stroke Engine To Effective Power                                      | Ir. Najamudin, MT                                      | 229-239   |
| 39 | Impact Of Motor Vehicle Emissions<br>On Air Quality In Urban And Sub Urban Area<br>( Case Study: Bandarlampung City) | Ir. A. Ikhsan Karim, MT.,<br>Ir. Sugito, MT            | 240-249   |

## Decision Support System for Mall Nutrition Using Simple Additive Weighting (SAW) Method

Reni Nursyanti, Mujiasih

Faculty of Computer Science, Bandar Lampung University Jl. ZA.Pagar Alam No.26 Labuhan Ratu Bandar Lampung, Indonesia

Abstract-The background of this research concerns the background by the number of severely malnourished children are increasing each year. Currently the data processing system and the calculation of the nutritional status of children under five are still using manual systems. Reporting nutritional status of children still using paper media which resulted in the frequent occurrence of data redundancy toddlers and infants often data loss occurs. To the authors conducted in-depth research that focuses on how to do the reporting and determination of the nutritional status of infants is more effective and efficient utuk always monitoring early childhood development. So in scientific research, the writer make an application determinants of nutrition in infants to help health centers in Mount harbor reporting and monitoring.

This application method is used to support the assessment of nutritional status of children in health centers Mount Labuan is Simple Additive Weighting (SAW). SAW method is to find a weighted summation of rating the performance of each alternative on all attributes (Fishburn, 1967) (MacCrimmon, 1968). This method is the most famous and most widely used in dealing with situations of Multiple Attribute Decision Making (MADM). MADM itself is a method used to find the optimal alternative of a number of alternatives to certain criteria

Keyword : Saw, decision support systems, information systems and Java.

#### I. INTRODUCTION

Nutrition in children under five years of age (infants) are factors to consider in maintaining health, since infancy is a vulnerable period of development of nutrition. Deaths occurred in infants is a result of poor nutrition. Poor nutrition starts from the weight loss of a child until he looks very bad. Based around the Indonesian Health Department reports a decline in malnutrition which in 2005 recorded 76 178 cases

and then dropped to 50 106 cases in 2006 and 39 080 cases occurred in 2007. The decline in malnutrition over the years this has not been established because of the case unreported.

symptoms that mark children clinically malnourished can be characterized as follows: Marasmus (Children are very thin, like the old man's face, concave stomach, skin wrinkles and maudlin), Kwashiorkor (swelling throughout the body, especially the legs, rounded and swollen face, thin hair , redness, irritability, and apathy muscles shrink), and Marasmus-Kwarshiorkor.

Preliminary examination of the symptoms of malnutrition, is quite difficult in the set, then built a system that can help people to be easily able to solve the problem. The method can be used is the SAW (Simple Additive Weighting). SAW method is to find a weighted summation of rating the performance of each alternative on all attributes (Fishburn, 1967) (MacCrimmon, 1968).

SAW method requires the decision matrix normalization process (X) to a scale that can be compared with all the ratings of the alternatives. This method is the most famous and most widely used in dealing with situations of Multiple Attribute Decision Making (MADM). MADM itself is a method used to find the optimal alternative of a number of alternatives to certain criteria.

From the above background, the researchers raised the heading "Decision Support System Diseases Malnutrition Using Simple Additive Weighting Method (SAW)".

#### II. LITERATUR REVIEW

#### Multiple Attribute Decision Making (MADM)

Multiple Attribute Decision Making (MADM) is a method used to find the optimal alternative of a number of alternatives to certain criteria. The essence of MADM is to determine the weights for each attribute value, then proceed with the process of ranking the alternatives that will select already given.

Many cases with MADM using SAW method to look for an alternative. A common problem is the difficulty of choosing which method is most relevant to solve a problem by using MADM models. SAW method is also a method of MADM simplest and most widely used. This method is also the easiest method to be applied, because it has an algorithm that is not too complicated.

#### System Addictive Weighting (SAW)

Is a weighted sum method. The basic concept is to find a method of SAW weighted summation of rating the performance of each alternative on all criteria (Kusumadewi, 2006). SAW method requires the decision matrix normalization process (X) to a scale that can be compared with all the alternative rating ada. Metode SAW recognize the existence of two (2) attributes that criterion gains (benefits) and cost criteria (cost). The fundamental difference of the two criteria is in the selection criteria when making decisions.

#### Research Method

## Step by step Simple Additive Weighting Method (SAW) for malnutrition prediction

a. Alternative Determination.
 In this study, alternative toddler nutritional status

assessed by AB1 to AB10, with the following description:

$$W = [W_1, W_2, W_3, ..., W_J]$$

AB1=Toddlers 1

AB2=Toddlers 2

AB3=Toddlers 3

AB4=Toddlers 4

AB5=Toddlers 5

AB6=Toddlers 6

AB7=Toddlers 7

AB8=Toddlers 8

AB9=Toddlers 9

AB10=Toddlers 10

- b. Indicators marked with the assessment criteria C1 through C5 with the following details
  - 1. Weight (C1)
  - 2. Tall (C2)
  - 3. Age (C3)
  - 4. Wrist Circumference (C4)
  - 5. abdominal circumference (C5)
- Determining the Likert scale or a scale with the value of nutritional status:

| Catogory       | poin(Cut Of Point)                   |
|----------------|--------------------------------------|
| More nutrition | >120 % Median BB/U Standard WHO NCHS |

| Good           | 80 % -120% Median I                  | BB/U  |
|----------------|--------------------------------------|-------|
| Nutrition      | Standard WHO-NCHS                    |       |
| Medium         | 70 %-79,9% Median I                  | BB/U  |
| Nutrition      | Standard WHO-NCHS                    |       |
| Less Nutrition | 60 %-69,9% Median I                  | BB/U  |
|                | Standard WHO-NCHS                    |       |
| Mall Nutrition | < 60 % Median BB/U Star<br>WHO- NCHS | ndard |

(Supariasa, 2001)

Weight of preference or level of importance of each indicator, given to each indicator value (2,2,2,2), where the weighting preference or interest rate is taken from the health center management wisdom Mount Labuan Waykanan on manual calculations. The following data will be known toddler nutritional status in Table as follows:

#### **Toddlers Table**

|                                                      | C1                                           | C2                                           | C3                                           | C4                                           | C5                                           |
|------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| AB1                                                  | 20                                           | 100                                          | 40                                           | 30                                           | 60                                           |
| AB2                                                  | 30                                           | 80                                           | 50                                           | 30                                           | 70                                           |
| AB3                                                  | 25                                           | 70                                           | 40                                           | 20                                           | 40                                           |
| AB4                                                  | 18                                           | 80                                           | 35                                           | 25                                           | 55                                           |
| AB5                                                  | 25                                           | 70                                           | 40                                           | 15                                           | 40                                           |
| AB6                                                  | 20                                           | 70                                           | 40                                           | 30                                           | 60                                           |
| AB7                                                  | 30                                           | 65                                           | 50                                           | 30                                           | 70                                           |
| AB8                                                  | 25                                           | 60                                           | 40                                           | 20                                           | 40                                           |
| AB9                                                  | 18                                           | 70                                           | 35                                           | 25                                           | 55                                           |
| AB10                                                 | 25                                           | 70                                           | 40                                           | 15                                           | 40                                           |
| AB2<br>AB3<br>AB4<br>AB5<br>AB6<br>AB7<br>AB8<br>AB9 | 30<br>25<br>18<br>25<br>20<br>30<br>25<br>18 | 80<br>70<br>80<br>70<br>70<br>65<br>60<br>70 | 50<br>40<br>35<br>40<br>40<br>50<br>40<br>35 | 30<br>20<br>25<br>15<br>30<br>30<br>20<br>25 | 70<br>40<br>55<br>40<br>60<br>70<br>40<br>55 |

Making the decision matrix of weighted scores of each alternative on each indicator:

$$X = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1j} \\ \vdots & & & \vdots \\ x_{i1} & x_{i2} & \dots & x_{ij} \end{bmatrix}$$

|     | 30 | 80 | 50 | 30 | 70 |
|-----|----|----|----|----|----|
|     | 25 | 70 | 40 | 20 | 40 |
| R=  | 18 | 80 | 35 | 25 | 55 |
| 11— | 25 | 70 | 40 | 15 | 40 |
|     | 20 | 70 | 40 | 30 | 60 |
|     | 30 | 65 | 50 | 30 | 70 |
|     | 25 | 60 | 40 | 20 | 40 |

20 100 40 30

|     | 0.666666667 | 1     | 0.8 | 1           | 0.857142857 |
|-----|-------------|-------|-----|-------------|-------------|
|     | 1           | 0.8   | 1   | 1           | 1           |
|     | 0.833333333 | 0.7   | 0.8 | 0.666666667 | 0.571428571 |
|     | 0.6         | 0.8   | 0.7 | 0.833333333 | 0.785714286 |
| R=  | 0.833333333 | 0.7   | 0.8 | 0.5         | 0.571428571 |
| 11- | 0.666666667 | 0.7   | 0.8 | 1           | 0.857142857 |
|     | 1           | 0.65  | 1   | 1           | 1           |
|     | 0.833333333 | 0.6   | 0.8 | 0.666666667 | 0.571428571 |
|     | 0.6         | 0.7   | 0.7 | 0.833333333 | 0.785714286 |
|     | 0.833333333 | 0.7   | 0.8 | 0.5         | 0.571428571 |
|     | 1           | 8 70  | 35  | 25 55       |             |
|     | 2           | 25 70 | 40  | 15 40       |             |

d. Conducting the process of normalization matrix ( Rij

$$r_{ij} = \begin{cases} \frac{x_{ij}}{Max_i(x_{ij})} \\ \frac{Min_ix_{ij}}{x_{ij}} \end{cases}$$

20 r11 0.666666667 MAX(20,30,25,18,25,20,30,25,18,25) 30 r12 MAX(20,30,25,18,25,20,30,25,18,25) 25 - 0.833333333 r13 MAX(20,30,25,18,25,20,30,25,18,25) 18 **—** 0. 6 r14 MAX(20,30,25,18,25,20,30,25,18,25) — 0. 83333333 r15 MAX(20,30,25,18,25,20,30,25,18,25) — 0. 66666667 r16 = MAX(20.30.25.18.25.20.30.25.18.25) 30

r18 = MAX(20.30.25.18.25.20.30.25.18.25)

r17

r19 ------ 0.6

MAX(20,30,25,18,25,20,30,25,18,25)

= MAX(20,30,25,18,25,20,30,25,18,25

e. Membentuk matrik ternomalisasi

$$R = \begin{bmatrix} r_{11} r_{12} \dots r_{1j} \\ \vdots & \vdots \\ \vdots & \vdots \\ r_{i1} r_{i2} \dots r_{ij} \end{bmatrix}$$

And The Result Is

The process of determining the nutritional status

| The process of determining the nutritional status |             |     |         |                 |             |           |                     |
|---------------------------------------------------|-------------|-----|---------|-----------------|-------------|-----------|---------------------|
|                                                   | C1          | C2  | C3      | C4              | C5          | Value     | Nutrition<br>Status |
| AB1                                               | 0.6666<br>6 | 1   | 0.<br>8 | 1               | 0.8571<br>4 | 86.5<br>% | Good<br>Nutrition   |
| AB2                                               | 1           | 0.8 | 1       | 1               | 1           | 96.0<br>% | Good<br>Nutrition   |
| AB3                                               | 0.8333      | 0.7 | 0.<br>8 | 0.66666666<br>7 | 0.5714<br>2 | 71.4<br>% | Medium<br>Nutrition |
| AB4                                               | 0.6         | 0.8 | 0.<br>7 | 0.83333333      | 0.7857<br>1 | 74.4<br>% | Medium<br>Nutrition |
| AB5                                               | 0.8333      | 0.7 | 0.<br>8 | 0.5             | 0.5714<br>2 | 68.1<br>% | Less Nutrition      |
| AB6                                               | 0.6666<br>6 | 0.7 | 0.<br>8 | 1               | 0.8571<br>4 | 80.5<br>% | Good<br>Nutrition   |
| AB7                                               | 1           | 0.6 | 1       | 1               | 1           | 93.0      | Good<br>Nutrition   |
| AB8                                               | 0.8333      | 0.6 | 0.<br>8 | 0.66666666<br>7 | 0.5714<br>2 | 69.4<br>% | Less Nutrition      |
| AB9                                               | 0.6         | 0.7 | 0.<br>7 | 0.83333333      | 0.7857<br>1 | 72.4<br>% | Medium<br>Nutrition |
| AB1<br>0                                          | 0.8333      | 0.7 | 0.<br>8 | 0.5             | 0.5714<br>2 | 68.1<br>% | Less Nutrition      |

$$V_i = \sum_{j=1}^n W_j r_{ij}$$

AB1={((2\*0.66666667) + (2\*1) + (2\*0.8)+(2\*0.857142857))\*(10/100))}=86%

Because the value of 86% AB1 is on the Likert scale 80% - 120% median W / A Standard WHO-

NCHS, the nutritional status is Good Nutrition.

#### III. RESULT AND DISCUSSION

Diagnosis Diagnosis Process nutritional status of infants using the Simple Additive Weighting Method (SAW)

The data is the data sample is tested, the data taken twenty children, namely:

Data normalization is a data sample tested, the data taken twenty children, namely:

| •           |             |           | İ          | wrist<br>circumference |       |
|-------------|-------------|-----------|------------|------------------------|-------|
| No Toddlers | Weight (Kg) | Tall (cm) | Age (moon) | (cm)                   | (cm)  |
| 1           | 20/30       | 100/100   | 40/50      | 30430                  | 60/60 |
| 2           | 30/30       | 80/100    | 50/50      | 30430                  | 70/60 |
| 3           | 25/30       | 70/100    | 40/50      | 20/30                  | 40/60 |
| 4           | 18/30       | 80/100    | 35/50      | 25/30                  | 55/60 |
| 5           | 25/30       | 70/100    | 40/50      | 15/30                  | 40/60 |
| 6           | 20/30       | 70/100    | 40/50      | 30/30                  | 60460 |
| 7           | 30/30       | 65/100    | 50/50      | 30/30                  | 70/60 |
| 8           | 25/30       | 60/100    | 40/50      | 20/30                  | 40/60 |
| 9           | 18/30       | 70/100    | 35/50      | 25/30                  | 55/60 |
| 10          | 25/30       | 70/100    | 40/50      | 15/30                  | 40/60 |
| 11          | 24/30       | 50/100    | 50/50      | 30/30                  | 40/60 |
| 12          | 20/30       | 60/100    | 40/50      | 25/30                  | 30460 |
| 13          | 15/30       | 65/100    | 40/50      | 20/30                  | 55/60 |
| 14          | 18/30       | 70/100    | 30/50      | 25/30                  | 45/60 |
| 15          | 17/30       | 50/100    | 45/50      | 15/30                  | 45/60 |
| 16          | 20/30       | 45/100    | 40/50      | 18/30                  | 40/60 |
| 17          | 24/30       | 65/100    | 35/50      | 19/30                  | 50/60 |
| 18          | 25/30       | 65/100    | 40/50      | 20/30                  | 50/60 |
| 19          | 26/30       | 55/100    | 40/50      | 20/30                  | 50/60 |
| 20          | 24/30       | 60/100    | 40/50      | 30430                  | 40/60 |

| A           | U           |           | U          |                                |                                    |
|-------------|-------------|-----------|------------|--------------------------------|------------------------------------|
| No Toddlers | Weight (Kg) | Tall (cm) | Age (moon) | wrist<br>circumference<br>(cm) | abdominal<br>circumference<br>(cm) |
| 1           | 20          | 100       | 40         | 30                             | 60                                 |
| 2           | 30          | 80        | 50         | 30                             | 70                                 |
| 3           | 25          | 70        | 40         | 20                             | 40                                 |
| 4           | 18          | 80        | 35         | 25                             | 55                                 |
| 5           | 25          | 70        | 40         | 15                             | 40                                 |
| 6           | 20          | 70        | 40         | 30                             | 60                                 |
| 7           | 30          | 65        | 50         | 30                             | 70                                 |
| 8           | 25          | 60        | 40         | 20                             | 40                                 |
| 9           | 18          | 70        | 35         | 25                             | 55                                 |
| 10          | 25          | 70        | 40         | 15                             | 40                                 |
| 11          | 24          | 50        | 50         | 30                             | 40                                 |
| 12          | 20          | 60        | 40         | 25                             | 30                                 |
| 13          | 15          | 65        | 40         | 20                             | 55                                 |
| 14          | 18          | 70        | 30         | 25                             | 45                                 |
| 15          | 17          | 50        | 45         | 15                             | 45                                 |
| 16          | 20          | 45        | 40         | 18                             | 40                                 |
| 17          | 24          | 65        | 35         | 19                             | 50                                 |
| 18          | 25          | 65        | 40         | 20                             | 50                                 |
| 19          | 26          | 55        | 40         | 20                             | 50                                 |
| 20          | 24          | 60        | 40         | 30                             | 40                                 |
|             |             |           |            |                                |                                    |
| Max         | 30          | 100       | 50         | 30                             | 70                                 |

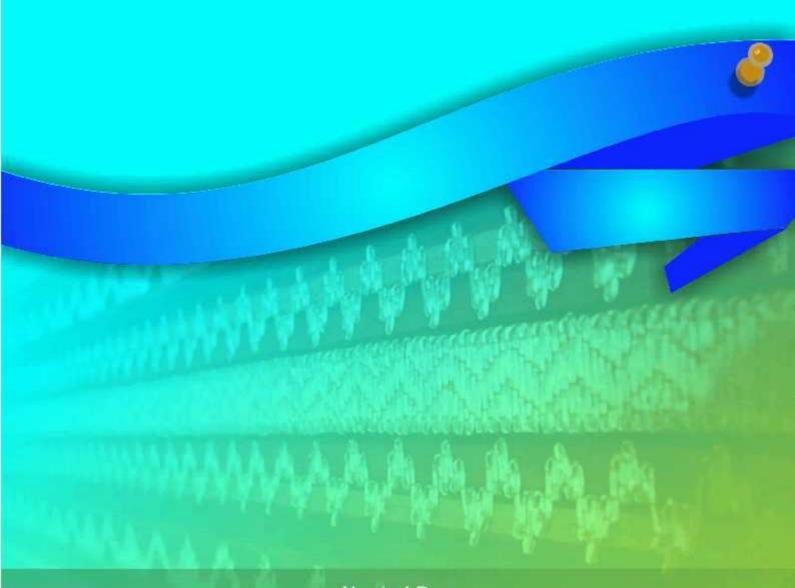
|            | 1           |           |             |                          | 1                   | Nutrition   |
|------------|-------------|-----------|-------------|--------------------------|---------------------|-------------|
| NoToddless | Weight (Kg) | Tall (cm) | Age (m con) | wrist circumference (cm) | poin (Cut Of Point) | Status      |
| 0.6666     | 1           | 0.8       | 1           | 0.8571                   | 86.50%              | Nutrition   |
| 1          | 0.8         | 1         | 1           | 1                        | 96.00%              | Nutrition   |
| 0.8333     | 0.7         | 0.8       | 0.66666     | 0.5714                   | 7140%               | Nutrition   |
| 0.6        | 0.8         | 0.7       | 0.83333     | 0.7857                   | 74.40%              | Nutrition   |
| 0. 8333    | 0.7         | 0.8       | 0.5         | 0.5714                   | 68.10%              | Nutrition   |
| 0.66666    | 0.7         | 0.8       | 1           | 0.8571                   | 80.50%              | Nutrition   |
| 1          | 0.65        | 1         | 1           | 1                        | 93.00%              | Nutrition   |
| 0. 8333    | 0.6         | 0.8       | 0.66666     | 0.5714                   | 69.40%              | Nutrition 1 |
| 0.6        | 0.7         | 0.7       | 0.83333     | 0.7857                   | 7240%               | Nutrition   |
| 0. 8333    | 0.7         | 0.8       | 0.5         | 0.5714                   | 68.10%              | Nutrition   |
| 0.8        | 0.5         | 1         | 1           | 0.5714                   | 77.40%              | Nutrition   |
| 0.6666     | 0.6         | 0.8       | 0.8333      | 0.4285                   | 66.60%              | Nutrition   |
| 0.5        | 0.65        | 0.8       | 0.66666     | 0.7857                   | 68.00%              | Nutrition   |
| 0.6        | 0.7         | 0.6       | 0.8333      | 0.6428                   | 67.50%              | Nutrition   |
| 0.5666     | 0.5         | 0.9       | 0.5         | 0.6428                   | 6220%               | Nutrition   |
| 0.6666     | 0.45        | 0.8       | 0.6         | 0.57142                  | 6180%               | Nutrition   |
| 0.8        | 0.65        | 0.7       | 0.6333      | 0.71428                  | 70.00%              | Nutrition 1 |
| 0. 8333    | 0.65        | 0.8       | 0.6666      | 0.7142                   | 73.30%              | Nutrition   |
| 0.8666     | 0.55        | 0.8       | 0.6666      | 0.7142                   | 72.00%              | Nutrition   |
| 0.8        | 0.6         | 0.8       | 1           | 0.5714                   | 75.40%              | Nutrition   |

Here's Nutritional Status Toddlers were tested, namely:

| No Balita | Status Gizi      |
|-----------|------------------|
| 1         | Good Nutrition   |
|           |                  |
| 2         | Good Nutrition   |
| 3         | Medium Nutrition |
| 4         | Medium Nutrition |
| 5         | Less Nutrition   |
| 6         | Good Nutrition   |
| 7         | Good Nutrition   |
| 8         | Less Nutrition   |
| 9         | Medium Nutrition |
| 10        | Less Nutrition   |
| 11        | Medium Nutrition |
| 12        | Less Nutrition   |
| 13        | Less Nutrition   |
| 14        | Less Nutrition   |
| 15        | Less Nutrition   |
| 16        | Less Nutrition   |
| 17        | Less Nutrition   |
| 18        | Medium Nutrition |
| 19        | Medium Nutrition |
| 20        | Medium Nutrition |

#### IV. CONCLUSION

Based on the results of the study, Decision Support Systems MallNutrition Disease Using Simple Additive Weighting Method (SAW) can be deduced that SAW method


can be used to determine the status of malnutrition in children under five.

#### REFERENCES

- [1] Hartono, Jogiyanto.2005, *Analisis dan Desain*, Andi Offset ,Yogyakarta.
- [2] Kadir Abdul, Heriyanto, 2005, Algoritma Pemograman Menggunakan C++, Andi Offset, Yogyakarta.
- [3] Sutabri Tata, S.Kom, M.M, 2005, Analisa Sistem Informasi, Andi Offset, Yogyakarta.
- [4] O'Brien, 2003, Introduction To Information System: Essential For E-Bussines Enterprise.
- [5] Kusumadewi, Sri, 2006, Fuzzy Multi-Attribute Decision Making (Fuzzy MADM), Graha Ilmu, Yogyakarta
- [6] http://eprints.undip.ac.id/40488/ (Diakses pada 1 juli 2014)
- [7] http://portalgaruda.org/?ref=browse&mod=viewarticle&article=11 2016 (Diakses pada 1 juli 2014)
- [8] http://ptiik.ub.ac.id/doro/archives/detail/DR00030201406 (Diakses pada 1 juli 2014)
- [9] Turban, E, 1995, Decision Support System and Intelligence System:Fourth Edition, Prentice Hall
- [10] Sprague, Ralph H and Watson, Hugh J., 1993, Decision Support System, Putting Theory into Practice, Prentice Hall, Inc. 3rd –ed.
- [11] Moore, J. H. and M. G. Chang (1980). "Design of Decision Support Systems", Data Base 12(1-2).
- [12] Bonczek R.H, Holsapple C.W, dan whinston A.B, 1980, The envolving Roles of Models in Decision Support System, Decision Science.
- [13] Supariasa, I.D.N.2002.penilaian Status Gizi.Jakarta:EGC

# PROCEEDINGS\_

3<sup>rd</sup>ICETD 2014



Hosted By :
Faculty of Engineering and Faculty of Computer Science
Bandar Lampung University, Indonesia