The Second International Conference on Engineering and Technology Development

2nd ICETD 2013

27, 28, 29 August 2013, Bandar Lampung, Indonesia

Hosted by:
Faculty of Engineering and Faculty of Computer Science,
Bandar Lampung University (UBL), Indonesia
2nd ICETD 2013
The Second International Conference
On Engineering And Technology Development

28 - 30 January 2013
Bandar Lampung University (UBL)
Lampung, Indonesia

PROCEEDINGS

Organized by:

Faculty of Computer Science and Faculty of Engineering
Bandar Lampung University (UBL)
Jl. Zainal Abidin Pagar Alam No.89 Labuhan Ratu, Bandar Lampung, Indonesia
Phone: +62 721 36 666 25, Fax: +62 721 701 467
website: www.ubl.ac.id
PREFACE

The Activities of the International Conference is in line and very appropriate with the vision and mission of Bandar Lampung University (UBL) to promote training and education as well as research in these areas.

On behalf of the Second International Conference on Engineering and Technology Development (2nd ICETD 2013) organizing committee, we are very pleased with the very good response especially from the keynote speaker and from the participants. It is noteworthy to point out that about 80 technical papers were received for this conference.

The participants of the conference come from many well known universities, among others: University Kebangsaan Malaysia – Malaysia, APTIKOM – Indonesia, Institut Teknologi sepuluh November – Indonesia, Surya Institute – Indonesia, International Islamic University – Malaysia, STMIK Mitra Lampung – lampung, Bandung Institut of Technology – Bandung, Lecture of The Malahayati University, B2TP – BPPT Researcher – lampung, Starch Technology Center – Lampung, Universitas Islam Indonesia – Indonesia, Politeknik Negeri Malang – Malang, University of Kitakyushu – Japan, Gadjah Mada University – Indonesia, Universitas Malahayati – Lampung, Lampung University – lampung, Starch Technology Center – Lampung, Universitas Riau – Riau, Hasanuddin University – Indonesia, Diponegoro University – Indonesia, King Abdulaziz University – Saudi Arabia, Parahyangan Catholic University – Indonesia, National Taiwan University – Taiwan, Surakarta Christian University – Indonesia, Sugijapranata Catholic University – Indonesia, Semarang University – Indonesia, University of Brawijaya – Indonesia, PPKIA Tarakanita Rahmawati – Indonesia, Kyushu University, Fukuoka – Japan, Science and Technology Beijing – China, Institut Teknologi Sepuluh Nopember – Surabaya, Researcher of Starch Technology Center, Universitas Muhammadiyah Metro – Metro, National University of Malaysia – Malaysia.

I would like to express my deepest gratitude to the International Advisory Board members, sponsor and also to all keynote speakers and all participants. I am also grateful to all organizing committee and all of the reviewers who contribute to the high standard of the conference. Also I would like to express my deepest gratitude to the Rector of Bandar Lampung University (UBL) who give us endless support to these activities, so that the conference can be administrated on time.

Bandar Lampung, 29 August 2013-08-26

Mustofa Usman, Ph.D
2nd ICETD Chairman
2nd International Conference on Engineering and Technology Development (ICETD 2013)
Universitas Bandar Lampung
Faculty of Engineering and Faculty of Computer Science

PROCEEDINGS

2nd ICETD 2013
The Second International Conference
On Engineering And Technology Development

28 -30 January 2013

INTERNATIONAL ADVISORY BOARD

Y. M Barusman, Indonesia
Ahmad F. Ismail, Malaysia
Mustofa Usman, Indonesia
Moses L. Singgih, Indonesia
Andreas Dress, Germany
Faiz A.M Elfaki, Malaysia
Warsono, Indonesia
Raihan Othman, Malaysia
Zeng Bing Zen, China
Tjin Swee Chuan, Singapore
Khomsahrial R, Indonesia
Rony Purba, Indonesia
Alex Tribuana S, Indonesia
Hon Wei Leong, Singapore
Imad Khamis, USA
Rozlan Alias, Malaysia
Rudi Irawan, Indonesia
Gusri Ibrahim, Indonesia
Jamal I Daoud, Malaysia
Riza Muhida, Indonesia
Heri Riyanto, Indonesia
Agus Wahyudi, Indonesia
Lilies Widojoko, Indonesia
PROCEEDINGS

2nd ICETD 2013
The Second International Conference
On Engineering And Technology Development

28 - 30 January 2013

STEERING COMMITTEE

Executive Advisors
Dr. M. Yusuf S. Barusman
Andala R. P. Barusman, MA.Ec

Chairman
Mustofa Usman, Ph.D

Co-Chairman
Dr. Ir. Hery Riyanto, MT
Ahmad Cucus, S.Kom., M.Kom

Secretary
Marzuki, S.Kom., M.Kom
Maria Shusanti Febrianti, S.Kom., M.Kom

Technical Committee
Indyah Kumoro, ST. IAI
Ardiansyah, ST., MT
Sofiah Islamiah, ST. MT
Taqwan Thamrin, ST., MSc
Dina Ika Wahyuningsih, S.Kom
Agus Sukoco, M.Kom
Hj. Susilowati, ST. MT
Haris Murwadi, ST, MT
Robby Yuli Endra, S.Kom., M.Kom
Fenty Ariani, S.Kom., M.Kom

Treasure
Samsul Bahri, SE
Dian Agustina, SE
PROCEEDINGS

2nd ICETD 2013
The Second International Conference
On Engineering And Technology Development

28 - 30 January 2013

ORGANIZING COMMITTEE

Chair Person
Dr. Ir. Hery Riyanto, MT

Vice Chair Person
Yuthsi Aprilinda, S.Kom., M.Kom

Treasure
Dian Agustina, S.E

Secretary
Aprizal, ST. MT
Ir. Tjejeng Sofyan, MM
Ir. Muhammad Zein, MT
Ir. Bambang Pratowo, MT

Special Events
Ir. Juniardi, MT
Ir. Indra Surya, MT
Ir. Sugito, MT
DR. Baginda Simaibang, M.Ed
Berry Salatar, S.Pd
Yanuar Dwi Prasetyo, S.Pd.I., M.A

Receptionist
Ir. Najamudin, MT
Kunarto, ST. MT
IB. Ilham Malik, ST. MT
Ir. A Ikhsan Karim, MT
Ir. Asikin, MT
Usman Rizal, ST., M.MSi

Transportation and Accommodation
Irawati, SE
Desi Puspita Sari, S.E
Tanto Lailam, S.H
Ilyas Sadad, S.T., M.T

Publication and Documentation
Ir. Indriati Agustina Gultom, M.M
Noning Verawati, S.Sos
Hesti, S.H
Rifandi Ritonga, SH
Violita, S.I.Kom

Consumption
Dra. Yulfiwini, M.T
Wiwin Susanty, S.Kom., M.Kom
Fenty Ariany, S.Kom., M.Kom
Reni Nursyanti, S.Kom., M.Kom
Erlangga, S.Kom
Arnes Yuli Vandika, S.Kom

Facility and Decoration
Siti Rahma Wati, SE
Dina Ika Wahyuningsih, S.Kom
Zainal Abidin, SE
Ahyar Saleh, SE
Eko Suhardiyanto
Wagino
Sugimin
Table Of Content

Organizing Committee.. i
Table Of Content.. v

Keynote Speaker

1. Recent Advances in Biofuel Cell and Emerging Hybrid System
 Abdul Aziz Ahmad and Raihan Othman .. 1

2. Waste Utilization Study Tailing Gold Mine in Way Linggo-Lampung, as Fine Aggregate Materials for Producing Mortar Materials based on concept of Green Technology
 Lilies Widojoko & Susilawati ... 8

3. Infrastructure Health Monitoring System (SHM) Development, a Necessity for Maintance and Investigation
 Prof. Dr. Priyo Suprobo, Faimun, Arie Febry .. 17

4. Four Phases Quality Function Deployment (Qfd) By Considering Kano Concept, Time And Manufacturing Cost
 Prof. Dr. Moses L Singgih, Dyah L. Trenggonowati, Putu D. Karningsih 22
<table>
<thead>
<tr>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Comparative Analysis for The Multi Period Degree Minimum Spanning Tree Problem</td>
<td>39</td>
</tr>
<tr>
<td>Wamiliana, Amanto, and Mustofa Usman</td>
<td></td>
</tr>
<tr>
<td>2. Choosing The Right Software In Supporting The Successful of Enterprise ERP Implementation</td>
<td>44</td>
</tr>
<tr>
<td>Yodhie Yuniarthe, Idris Asmuni</td>
<td></td>
</tr>
<tr>
<td>3. Climate Adaptive Technology In Maintaining Vernacularism Of Urban Kampong Case study: KampungAdat (Indiginous) Mahmud, Bandung District,West Java</td>
<td>50</td>
</tr>
<tr>
<td>Marcus Gartiwa</td>
<td></td>
</tr>
<tr>
<td>4. The Prospect Of Diesohol In Facing Fossil Fuel Crisis</td>
<td>63</td>
</tr>
<tr>
<td>M.C. Tri Atmodjo</td>
<td></td>
</tr>
<tr>
<td>5. The Potential Of Agriculture And Forestry Biomass Wastes As Source Of Bioenergy</td>
<td>66</td>
</tr>
<tr>
<td>Hardoyo</td>
<td></td>
</tr>
<tr>
<td>6. The Importance of Education Facility as Sustainable Urban Generation Tool</td>
<td>71</td>
</tr>
<tr>
<td>Fritz Akhmad Nuzir, Haris Murwadi and Bart Julien Dewancker</td>
<td></td>
</tr>
<tr>
<td>7. The implementation of Secton Method for Solving Systems of Non Linear Equations</td>
<td>80</td>
</tr>
<tr>
<td>Nur Rokhman</td>
<td></td>
</tr>
<tr>
<td>8. Quality Control Analysis Into Decrease The Level Defects On Coffee Product</td>
<td>85</td>
</tr>
<tr>
<td>Heri Wibowo, Sulastri and Emy Khikmawati</td>
<td></td>
</tr>
<tr>
<td>9. Public Transportion Crisis In Bandar Lampung</td>
<td>89</td>
</tr>
<tr>
<td>Ida Bagus Ilham Malik</td>
<td></td>
</tr>
<tr>
<td>10. Geospatial Analysis of Land Use Change in Way Kuripan Watershed, Bandar Lampung City</td>
<td>99</td>
</tr>
<tr>
<td>Candra Hakim Van Rafi‘i1., Dyah Indriana Kusumastuti2., Dwi Jokowinarno</td>
<td></td>
</tr>
<tr>
<td>11. Material Utilization Technology Of Agriculture And Forestry Waste</td>
<td>105</td>
</tr>
<tr>
<td>Hardoyo</td>
<td></td>
</tr>
<tr>
<td>12. The Supply Chain System Of Cassava On The Tapioca Industry</td>
<td>108</td>
</tr>
<tr>
<td>Hardoyo</td>
<td></td>
</tr>
<tr>
<td>13. Glass Technology In Natural Light Glasses On Aperture Element In The Architecture World</td>
<td>113</td>
</tr>
<tr>
<td>Muhammad Rija & MT Pedia Aldy</td>
<td></td>
</tr>
</tbody>
</table>
 Firdaus Chairuddin, Wihardi Tjaronge, Muhammad Ramli, Johannes Patanduk .. 117

15. Coordination Of Architectural Concepts And Construction Systems
 Eddy Hermanto. .. 129

16. Seismic Assessment of RC Building Using Pushover Analysis
 Riza Ainul Hakim. .. 136

17. Viscosity and Liquidity Index Relation for Elucidating Mudflow Behavior
 Budijanto Widjaja and Shannon Hsien-Heng Lee. .. 143

18. The Use of Pozzolanic Material for Improving Quality of Strontium Liquid Waste Cementation in Saline Environment during Nuclear Waste Immobilization Process
 Muhammad Yusuf, HayuTyasUtami, Tri SulistiyoHariNugroho, SusetyoHarioPutero .. 148

19. Geospatial Analysis Of Land Use And Land Cover Changes For Discharge At Way Kualagaruntang Watershed In Bandar Lampung
 Fieni Yuniarti, Dyah Indriana K, Dwi Joko Winarno. .. 153

20. Wifi Network Design For High Performance
 Heru Nurwarsito, KasyfulAmron, BektiWidyaningsih .. 161

 Yasser, Herman Parung, M. Wihardi Tjaronge, Rudy Djamaluddin .. 167

22. The Research Of Slow Release Nitrogen Fertilizer Applied In Sugarcane (Saccharum Officinarum) For Green Energy Bioethanol
 M.C. Tri Atmodjo, Agus Eko T. Nurul Rusdi, Sigit Setiadi, and Rina .. 179

23. Energy Utilization Technology Of Agriculture And Forestry Waste
 Hardoyo. ... 185

24. Implementation Of Fuzzy Inference System With Tsukamoto Method For Study Programme Selection
 Fenty Ariani and Robby Yuli Endra. .. 189

25. The Analysis of Video Conference With ITU Standarization (International Telecommunication Union) That Joining in Inherent At Bandar Lampung University
 Maria Shusanti F, Happy Reksa .. 201
26. The E-internal audit iso 9001:2008 based on accreditation form assessment matrix in study program for effectiveness of monitoring accreditation
 Marzuki, Maria Shusanti F. ... 207

27. The Developing Of e-Consultations For Effectiveness of Mentoring Academy
 Ahmad Cucus, Endang K ... 214

28. The Evaluation of information system performance in higher education case study with EUCS model at bandar lampung university
 Reni Nursyanti, Erlangga ... 221

29. The Analysis Of History Collection System Based On AndroidSmartphone With Qr Code Using Qr CodeCase Study: Museum Lampung
 Usman Rizal, Wiwin Susanty, Sutrisno .. 230

30. Application of Complaint Handling by Approach Model of ISO 10002 : 2004 to Increase Complaint Services
 Agus Sukoco and Yuthsi Aprilinda .. 235

31. Towards Indonesian Cloud Campus
 Taqwan Thamrin, Ing Lukman, Dina Ika Wahyuningsih .. 252

32. Bridging Router to ADSL Modem for Stability Network Connection
 Arnes Yuli Vandika and Ruri Koesliandana .. 257

33. The Effect of Use Styrofoam for Flexural Characteristics of Reinforced Concrete Beams
 Yasser, Herman Parung, M. Wihardi Tjaronge, Rudy Djamaluddin 261

34. The Estimation Of Bioethanol Yield From Some Cassava Variety
 M.C. Tri Atmodjo .. 273

35. Effect of Superficial Velocity of Pressure Difference on The Separation of Oil And Water by Using The T-Pipe Junction
 Kms. Ridhuan and Indarto .. 277

36. The use of CRM for Customer Management at Cellular Telecommunications Industry
 Ayu Kartika Puspa ... 293

37. Indonesian Puslit (Centre Of IT Solution) Website Analysis Using Webqual For Measuring Website Quality
 Maria Shusanti Febrianti and Nurhayati .. 297

38. The E-internal audit iso 9001:2008 based on accreditation form assessment matrix in study program for effectiveness of monitoring accreditation
 Marzuki, Maria Shusanti F. ... 307
 Agus Sukoco .. 320

40. Value Analysis Of Passenger Car Equivalent Motorcycle (Case Study Kartini Road Bandar Lampung)
 Juniardi, Aflah Efendi .. 337

41. Alternative Analysis Of Flood Control Downstream Of Way Sekampung River
 Sugito, Maulana Febramsyah .. 347

42. Analysis Of Fitness Facilities And Effective Use Of Crossing Road
 Juniardi, Edi Haryanto .. 353

43. Study On Regional Development Work Environment Panjang Port Lands In Support Bandar Lampung City As A Service And Trade
 Ir. A. Karim Iksan, MT., Yohn Ferry 359

44. Analytical And Experimental Study Bamboo Beam Concrete
 Hery Riyanto, Sugito, Juli .. 370

45. Comparative Analysis Of Load Factor Method Static And Dynamic Method (Case Study Akdp Bus Route Rajabasa - Bakauheni)
 A. Ikhsan Karim, MT., Ahmad Zulkily 378

46. Optimization Utilization Of Water Resources Dam Batutegi Using Method Of Linear Program
 Aprizal, Hery Fitriyansyah ... 386

47. Characteristics Generation Traffic Patterns And Movement In Residential Area (Case Study Way Kandis Residential Bandar Lampung)
 Fery Hendi Jaya, Juniardi .. 392

48. Use Study On Slight Beam Reinforced Concrete Floor Platein Lieu Of Scondary Beam
 Hery Riyanto, Sugito, Lilies Widodjoko, Sjamsu Iskandar 399

49. Observation Of The Effect Of Static Magnetic Field 0.1 Mt On A-Amylase Activity In Legume Germination
 Rochmah Agustrina, Tundjung T. Handayani, and Sumardi 405

50. Effectiveness Analysis Of Applications Netsupport School 10 Based Iso / Iec 9126-4 Metrics Effectiveness
 Ahmad Cucus, Nelcy Novelja .. 413

51. Comparative Performance Analysis Of Banking For Implementing Internet Banking
 Reza Kurniawan .. 418
Abstract—One of the software development standards in use today is the Capability Maturity Model Integration (CMMI) of the Software Engineering Institute (SEI) and ISO 9126. Based on the 2009 survey conducted by Pornchai Mongkolnam, in Asia there has been a 1,901 CMMI appraisal, to the North American continent as 1328, as many as 536 Europe, and South America 289 CMMI assessment. In India alone there has been a 409 CMMI appraisal, including three world ranking, making India the more trusted by the world International for application development. Meanwhile in Indonesia CMMI implementation is not too meaningful. Only a mixture of two companies (foreign and local) that implements it. That was probably due to the application of the mandatory in the meet (mandatory) from its headquarters abroad or indeed the company began to enter into foreign markets that require CMMI certification. This study seeks to help measure the maturity of software development using an integrated approach between CMMI and ISO 9126 in a local development company. Hopefully this can be more give their views so as to facilitate its peers able to take to implement the same thing.

ISO 9001 is a standard for quality management systems while CMMI is a model for process improvement. If an organization that has achieved ISO registration wishes to improve processes continuously, CMMI can be a strong candidate because it provides a more detailed roadmap for process improvement. However, with respect to adopting CMMI in organizations that are familiar with ISO 9001, there are some issues that need to be resolved. For example, ISO 9001 and CMMI have different targets, intent, and quantity of detail. In this paper, we present an integrated model of ISO9001:2000 and CMMI and ISO 9126, which would resolve the above problems. We expect that this model will be a useful tool for ISO registered organizations aim to attain higher CMMI levels.

Keywords— Software • Software Quality • ISO9126 • CMMI
INTRODUCTION

The fundamental of the software quality from the definition of software quality concept and percept that many people supporting the project affect the software quality product. One of standard is ISO 9001 registered organizations are not likely to implement CMMI with ISO 9001:2008 because such implementation would cause extra efforts brought about by the difference between the two. Therefore it would be a priority to identify the similarities and differences between ISO 9001:2008 and CMMI. Generally, a mapping table between standards to transition one to another is used.

Computers are being used in an increasingly wide variety of application areas, and their correct operation is often critical for business success and/or human safety. Developing or selecting high-quality software products is therefore of prime importance. Comprehensive specification and evaluation of software product quality is a key factor in ensuring adequate quality. This can be achieved by defining appropriate quality characteristics, taking account of the purpose of usage of the software product. It is important that every relevant software product quality characteristic is specified and evaluated, whenever possible using validated or widely accepted metrics. (3). Among all the Software-related standards in the worlds, there are few that every person who practices software at least something about ISO standard (1). ISO standard established an influential vocabulary and conceptual for quality (4). The

ISO/IEC 9126 standard has been developed in order to address software quality issues (3), (5), (6), (7), (8). It specifies software product quality characteristics and sub-characteristics and proposes metrics for their evaluation.

ISO 9001 registered organizations are not likely to implement CMMI with ISO 9001:2008 because such implementation would cause extra efforts brought about by the difference between the two. Therefore it would be a priority to identify the similarities and differences between ISO 9001:2008 and CMMI. Generally, a mapping table between standards to transition one to another is used.

PREVIOUS RESEARCH

Previous research about application for a wizard based software quality measurement standard ISO 9126. (10), To obtain software quality are expected, measures quality a software product is a critical element of the security device can represent basic study of the specification, design and coding. Organizations must monitor and measure the characteristics of the products to prove that the product requirements have been met. Thus, in this regard is required measurement and monitoring of effective evaluation of the software produced in accordance with existing standards.

Of several standards to evaluate the process of developing a software include Capability Maturity Model Integration and ISO 9126. Integration of these two standards would produce an evaluation standard software development process better and details of the software development process. So we need a tool to facilitate the evaluation of the measurement of software development maturity. This will help the developer and end user benefits that the process of software development is in conformity with the standards and produce a software product is good.

Corresponding Authors: Agus Sukoco, Faculty of Computer Science, Bandar Lampung University
Maturity measurement applications are tools that can help in the process used to measure the maturity of software development by presenting a few questions. Published in web-based form that allows the user to take measurements anywhere and maturity to help facilitate an evaluation process of software development.

PURPOSE OF THE INTEGRATED MODEL

ISO 9001 requires that processes to be continuously improved even after achieving ISO registration. CMMI can be a good to an organization in the software and systems industry to achieve further process improvement, because CMMI is quite detailed and contains more concepts of ‘improvement of process’ than ISO 9001:2008. Furthermore, considering that many ISO 9001:1994 registered organizations are trying to introduce SW-CMM, it is expected that many ISO 9001:2000 registered organizations will want to adopt CMMI into their systems. As we described in the Introduction, it is simple to implement ISO 9004:2008 to ISO registered organizations because the structure of ISO 9004:2000 is similar to that of ISO 9001:2008. Therefore, it would be ideal for ISO registered organizations to adopt CMMI if the structure of CMMI is similar to that of ISO 9001:2008 [15].

OVERALL VIEW OF ISO/IEC 9126

ISO/IEC 9126 describes a two-part model for software product quality: a) internal quality and external quality, and b) quality in use. The first part of the model specifies six characteristics for internal and external quality, which are further subdivided into subcharacteristics. These subcharacteristics are manifested externally when the software is used as a part of a computer system, and are a result of internal software attributes. This part of ISO/IEC 9126 does not elaborate the model for internal and external quality below the level of subcharacteristics(3).

The characteristics defined are applicable to every kind of software, including computer programs and data contained in firmware. The characteristics and subcharacteristics provide consistent terminology for software product quality. They also provide a framework for specifying quality requirements for software, and making trade-offs between software product capabilities.(11)

This generic quality model can then be instantiated as a model for internal quality or for external quality by using different sets of metrics(7). The model itself is based on the six characteristics: functionality, reliability, usability, efficiency, maintainability, and portability(12), (11). And a quality model is a very useful tool for quality requirement engineering as well as quality evaluation. ISO/IEC 9126-1 provides a software product quality model. It is intended to be used as a general purpose default standard quality model(11).

Evaluation of software products in order to satisfy software quality needs is one of the processes in the software development lifecycle. Software product quality can be evaluated by measuring internal attributes (typically static measures of intermediate products), or by measuring external attributes (typically by measuring the behavior of the code when executed), or by measuring quality in use attributes. The objective is for the product to have the required effect in a particular context of use improving product quality, and product quality.
contributes to improving quality in use.(3).

The full table of Characteristics and Subcharacteristics for the ISO 9126-1 Quality Model is:

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Subcharacteristics</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functionality</td>
<td>Suitability</td>
<td>This is the essential Functionality characteristic and refers to the appropriate ness (to specification) of the functions of the software.</td>
</tr>
<tr>
<td></td>
<td>Accurateness</td>
<td>This refers to the correctness of the functions, an ATM may provide a cash dispensing function but is the amount correct?</td>
</tr>
<tr>
<td></td>
<td>Interoperability</td>
<td>A given software component or system does not typically function in isolation. This subcharacteristic concerns the ability of a software component to interact with other components or systems.</td>
</tr>
<tr>
<td></td>
<td>Compliance</td>
<td>Where appropriate certain industry (or government) laws and guidelines need to be complied with, i.e. SOX. This subcharacteristic addresses the compliant capability of software.</td>
</tr>
<tr>
<td></td>
<td>Security</td>
<td>This subcharacteristic relates to unauthoriz</td>
</tr>
<tr>
<td>Characteristics</td>
<td>Subcharacteristics</td>
<td>Definitions</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Reliability</td>
<td>Maturity</td>
<td>This subcharacteristic concerns frequency of failure of the software.</td>
</tr>
<tr>
<td></td>
<td>Fault tolerance</td>
<td>The ability of software to withstand (and recover) from component, or environmental, failure.</td>
</tr>
<tr>
<td></td>
<td>Recoverability</td>
<td>Ability to bring back a failed system to full operation, including data and network connections.</td>
</tr>
<tr>
<td></td>
<td>Understandability</td>
<td>Determines the ease of which the systems functions can be understood, relates to user mental models in Human Computer Interaction methods.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Subcharacteristics</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usability</td>
<td>Learnability</td>
<td>Learning effort for different users, i.e. novice, expert, casual etc.</td>
</tr>
<tr>
<td></td>
<td>Operability</td>
<td>Ability of the software to be easily operated by a given user in a given environment.</td>
</tr>
<tr>
<td></td>
<td>Efficiency</td>
<td>Characterizes response times for a given throughput, i.e. transaction rate.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Subcharacteristic</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resource behavior</td>
<td>Characterizes resources</td>
</tr>
</tbody>
</table>

ISSN 2301-6590
<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Subcharacteristics</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Memory</td>
<td>used, i.e. memory, cpu, disk and network usage.</td>
</tr>
<tr>
<td>Maintainability</td>
<td>Analyzability</td>
<td>Characterizes the ability to identify the root cause of a failure within the software.</td>
</tr>
<tr>
<td></td>
<td>Changeability</td>
<td>Characterizes the amount of effort to change a system.</td>
</tr>
<tr>
<td></td>
<td>Stability</td>
<td>Characterizes the sensitivity to change of a given system that is the negative impact that may be caused by system changes.</td>
</tr>
<tr>
<td></td>
<td>Testability</td>
<td>Characterizes the effort needed to verify (test)</td>
</tr>
<tr>
<td></td>
<td>Adaptability</td>
<td>a system change.</td>
</tr>
<tr>
<td></td>
<td>Installability</td>
<td>Characterizes the ability of the system to change to new specifications or operating environments.</td>
</tr>
<tr>
<td>Portability</td>
<td></td>
<td>Characterizes the effort required to install the software.</td>
</tr>
<tr>
<td></td>
<td>Conformance</td>
<td>Characterizes the effort for functionality, but this characteristic relates to portability. One example would be Open SQL conformance which relates to portability of database used.</td>
</tr>
<tr>
<td></td>
<td>Replaceability</td>
<td>Characterizes</td>
</tr>
</tbody>
</table>
Characteristics | Subcharacteristics | Definitions
--- | --- | ---
| | | the plug and play aspect of software components, that is how easy is it to exchange a given software component within a specified environment.

MODEL SOFTWARE LIFE CYCLE

The concepts can be mapped on to other models of software life cycles if the user so wishes as

- **Step #1 Quality Requirements Identification**

For each of the Quality characteristics and sub-characteristics defined in the Quality model determine the Quality in Use, External and Internal Quality. Assigning relative weights will allow the evaluators to focus their efforts on the most important sub-characteristics.

- **Step #2 Specification of the evaluation**

This step is applied during every development process activity. For each of the Quality sub-characteristics defined in the Quality model identify the metrics to be applied and the required levels to achieve the User Needs set in Step 1.

- **Step #3 Design of the evaluation**

This step is applied during every development process activity. Develop a measurement plan (similar to example in Table 2) containing the deliverables that are used as input to the measurement process and the metrics to be applied.

- **Step #4 Execution of the evaluation**

This step is applied during every development process activity. Execute the evaluation plan and complete the column. The process for evaluations may be used as a guidance for planning and executing the measurement process.

- **Step #5 Feedback to the organization**

This step is applied during every development process activity. Once all measurements have been completed map the results and document conclusions in the form of a report. Also identify specific areas where quality improvements are required for the product to meet the user needs.

ISO 9126-4 Quality in Use Metrics

Effectiveness metrics assess the tasks performed by users achieve specified goals with accuracy and completeness in a specified context of use.

- **Task effectiveness**, purpose of the measurement whether proportion of the goals of the task is achieved correctly, measurement formula: $M_1 = |1 - \sum A_i|_1$
A proportional value of each missing or incorrect component in the task output

- **Task Completion**, whether proportion of the tasks are completed, measurement formula :
 \[X = \frac{A}{B} \]

 A: Number of tasks completed
 B: total number of task attempted

- **Error Frequency**, whether the frequency of error, measurement formula :
 \[X = \frac{A}{T} \]

 A: Number of error made by user
 T: time or number of tasks

Productivity metrics assess that users consume in relation to the effectiveness achieved in a specified context of the time to complete the task, although other relevant resources could include the user’s effort, materials or the financial cost of usage.

- **Task time**, to measure how long does it take to complete a task, Formula :
 \[X = \frac{Ta}{Tb} \]

 Ta: Task Time
 Tb = task time

- **Task Efficiency**, to measure efficiency are the users
 \[X = \frac{M1}{T} \]

 M1 = task effectiveness
 T = task time

- **Economic productivity**, to measure costeffective is the user
 \[X = \frac{M1}{C} \]

 M1 = task effectiveness
 C = total cost of the task

- **Productivity proportion**, to measure costeffective is the user
 \[X = \frac{Ta}{Tb} \]

 Ta = productivity time=task-help me
 Tb = task time

- **Relative user efficiency**, to measure efficient is a user compared to an expert
 Relative user efficiency : \[X = \frac{A}{B} \]

 A: ordinary user’s task efficiency
 B: expert user’s task efficiency

Safety metrics assess the level of risk of harm to people, business, software property or the environment in a specified context of use, it include the health and safety to the both the user and those affected by use, as well as unintended physical.

- **User health and safety**, to measure the incidence of health problems among users of the product.
 \[X = 1 - \frac{A}{B} \]

 A: number of user’s reporting RSI
 B: total number of user’s

- **Safety of people affected by use of the system**, to measure
the incidence of hazard to people affected by use of the system.

\[X = 1 - \frac{A}{B} \]

A: number of people put a hazard
B: total number of people potentially affected by the system

- **Economic damage**, to measure the incidence of economic damage.

\[X = 1 - \frac{A}{B} \]

A: number of occurrences of economic damage
B: total number of usage situations

- **Software damage**, to measure the incidence of software corruption.

\[X = 1 - \frac{A}{B} \]

A: number of occurrences of software corruption
B: total number of usage situations

Satisfaction metrics assess user’s attitudes towards the use of products in a specified context of use. Satisfaction is influenced by the user’s perception of properties of the software product (such as those measured by the external metrics) and by the user’s perception of the efficiency, productivity, and the safety in use.

- **Satisfaction scale**, to measure the satisfied of the user’s

\[X = \frac{A}{B} \]

A: questionnaire producing psychometric scales
B: population average

- **Satisfaction questionnaire**, to measured the satisfied of the user’s with specific software features

\[X = \frac{\sum(A_i)}{n} \]

A): response to a question
n: number of responses

- **Discretionary questionnaire**, to measured the proportion of potential user’s choose to use the system.

\[X = \frac{A}{B} \]

A: number of times that specific software functions/application/systems are used
B: number of times they are intended to be used

MODEL OF ISO 9001:2008

ISO 9001:2008 is a necessary requirement for quality management system. It is a part of ISO 9000 family that consist of ISO 9000 (fundamentals and vocabulary), ISO 9001 (requirements), ISO 9004 (guidelines for performance improvements) and ISO19011 (guidelines for quality and environmental management systems auditing). ISO 9001:2008 is an abstract and sparse document that can be applied to any category of business. ISO 9001 could be interpreted by ISO 9000-3[2] or TickIT[3] when applied to organizations in the software industry. For every requirement in ISO 9001, an organization can choose to have two statuses, ‘satisfied’ or ‘not satisfied’. If every requirement is satisfied, then ISO registrations achieved. Compared with ISO 9001:2008 ISO 9001:2008 and ISO 9004:2000 are both similar in terms of structure and terminology used to allow easy conversion from one to the other.
Table 1 Method for integration classified according to the correspondence types

<table>
<thead>
<tr>
<th>Types of correspondence</th>
<th>Methods to integrate models</th>
</tr>
</thead>
<tbody>
<tr>
<td>When ISO 9001:2008 shall-statements (requirements) fully satisfy CMMI practices</td>
<td>ISO 9001:2008 shall-statements are kept and the relationships between CMMI and the integrated model are recorded.</td>
</tr>
<tr>
<td>When ISO 9001:2008 shall-statements can or can not satisfy CMMI practices by interpretation</td>
<td>ISO shall-statements are modified - ISO requirements' focus are calibrated by using square brackets ([]). Relationships between CMMI and the integrated model are recorded.</td>
</tr>
<tr>
<td>When ISO 9001:2008 shall-statements partially satisfy CMMI practices</td>
<td>Relationships between ISO 9001:2008 shall-statements and CMMI are recorded.</td>
</tr>
</tbody>
</table>

Source: Chanwoo Y et al.

Table Structure of the integrated model

<table>
<thead>
<tr>
<th>Integrated model's contents</th>
<th>CMMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Quality management system</td>
<td></td>
</tr>
<tr>
<td>4.1 General requirements</td>
<td>GP 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 2.9, 2.10, 3.1, 3.2</td>
</tr>
<tr>
<td>4.2 Documentation Requirements</td>
<td></td>
</tr>
<tr>
<td>4.2.1 General</td>
<td>OPD</td>
</tr>
<tr>
<td>4.2.2 Quality manual</td>
<td>OPD</td>
</tr>
<tr>
<td>4.2.2.1 Organization's set of standard process</td>
<td>OPD, GP 3.1</td>
</tr>
<tr>
<td>Integrated model's contents</td>
<td>CMMI</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>6.2.1 General</td>
<td>GP 2.5</td>
</tr>
<tr>
<td>6.2.2 Competence, awareness and training</td>
<td>OT, OEI, GP 2.5</td>
</tr>
<tr>
<td>6.3 Infrastructure</td>
<td>GP 2.3</td>
</tr>
<tr>
<td>6.4 Work environment</td>
<td>OEI</td>
</tr>
<tr>
<td>7. Product realization</td>
<td></td>
</tr>
<tr>
<td>7.1 Planning of product realization</td>
<td>GP 2.2</td>
</tr>
<tr>
<td>7.2 Customer-related processes</td>
<td></td>
</tr>
<tr>
<td>7.2.1 Determination of requirements related to the product</td>
<td>RD</td>
</tr>
<tr>
<td>7.2.2 Review of requirements to the product</td>
<td>RD, REQM</td>
</tr>
<tr>
<td>7.2.3 Customer communication</td>
<td>GP 2.7</td>
</tr>
<tr>
<td>7.3 Design and development</td>
<td></td>
</tr>
<tr>
<td>7.3.1 Design and development planning</td>
<td>GP 2.4, OEI</td>
</tr>
<tr>
<td>7.3.1.1 Establishing design and development plan</td>
<td>GP 3.1, PP, IT</td>
</tr>
<tr>
<td>7.3.1.2 Team composition and operation</td>
<td>IPM, IT, OEI</td>
</tr>
<tr>
<td>7.3.1.3 Risk management</td>
<td>RSKM</td>
</tr>
<tr>
<td>7.3.2 Design and development inputs</td>
<td></td>
</tr>
<tr>
<td>7.3.3 Design and development process</td>
<td>PM, RSKM, VER, PMC</td>
</tr>
<tr>
<td>7.3.4 Design and development review</td>
<td>TS, IPM, RSKM</td>
</tr>
<tr>
<td>7.3.5 Design and development verification</td>
<td>VER</td>
</tr>
<tr>
<td>7.3.6 Design and development validation</td>
<td>VAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integrated model's contents</th>
<th>CMMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.7 Control of design and development changes</td>
<td>CM</td>
</tr>
<tr>
<td>7.4 Purchasing</td>
<td></td>
</tr>
<tr>
<td>7.4.1 Purchasing process</td>
<td>SAM, ISM</td>
</tr>
<tr>
<td>7.4.2 Purchasing information</td>
<td></td>
</tr>
<tr>
<td>7.4.3 Verification of purchased product</td>
<td>SAM, ISM</td>
</tr>
<tr>
<td>7.5 Production and service provision</td>
<td></td>
</tr>
<tr>
<td>7.5.1 Control of production and service provision</td>
<td></td>
</tr>
<tr>
<td>7.5.2 Validation of processes for production the service provision</td>
<td></td>
</tr>
<tr>
<td>7.5.3 Identification and traceability</td>
<td>CM, GP 2.6</td>
</tr>
<tr>
<td>7.5.4 Customer property</td>
<td></td>
</tr>
<tr>
<td>7.5.5 Preservation and delivery of product</td>
<td>PI</td>
</tr>
<tr>
<td>7.6 Control of monitoring and measuring devices</td>
<td></td>
</tr>
<tr>
<td>8. Measurement, analysis and Improvement</td>
<td></td>
</tr>
<tr>
<td>8.1 General</td>
<td></td>
</tr>
<tr>
<td>8.2 Monitoring and measurement</td>
<td>MA</td>
</tr>
<tr>
<td>8.2.1 Customer satisfaction</td>
<td></td>
</tr>
<tr>
<td>8.2.2 Internal audit</td>
<td>OPP, GP 2.9, PPQA</td>
</tr>
<tr>
<td>8.2.3 Quantitative project management</td>
<td>QPM</td>
</tr>
<tr>
<td>8.2.3.1 Monitoring and measurement of processes</td>
<td>MA, GP 2.8, QPM</td>
</tr>
</tbody>
</table>
Integrated model's contents | CMMI
--- | ---
8.2.3.2 Monitoring and measurement of product | MA, QPM
8.2.4 Monitoring and measurement of product | MA
8.3 Control of nonconforming product |
8.4 Analysis of data | MA, OPP
8.4A Measurement management | OPF, MA
8.5 Improvement |
8.5.1 Continual improvement | OPF
8.5.1.1 Selecting improvements | OID
8.5.1.2 Deploying improvements | OID
8.5.2 Casual Analysis and Resolution | CAR
8.5.2.1 Corrective action | OPF, CAR
8.5.2.2 Preventive action | CAR

Source: Chanwoo Y et.al.

CMMI PROCESS MODEL

CMMI (Capability Maturity Model Integration) is an integrated model of many CMMs intended to achieve process improvement. CMM is a model that contains the essential elements of effective processes for one or more disciplines and describes an evolutionary improvement path from ad hoc, immature processes to disciplined, mature processes with improved quality and effectiveness.

CMMI has two representations. One is the staged representation. The other is the continuous representation. In the staged representation maturity level of an organization ranges from level 1 to 5. In the continuous representation each process capability level ranges from 0 to 5. The staged representation is most suitable for an organization that does not know which processes need to be improved first because the staged representation offers process areas applicable to each maturity level. The continuous representation provides flexibility for selecting processes fit for achieving business goal of the organization. CMMI provides 25 process areas (Process area means a cluster of related practices in an area that, when implemented collectively, satisfies a set of goals considered important for making significant improvement in that area. Goals are classified as generic goals and specific goals. A generic goal describes the characteristics that must be present to institutionalize the processes that implement a process area. A specific goal describes the unique characteristics that must be present to satisfy the process area. Practices are expected components for satisfying goals. Practices are classified as generic practices and specific practices. A generic practice is the description of an activity that is considered important in achieving the associated generic goal. A specific practice is the description of an activity that is considered important in achieving the associated specific goal.

CMMI Process model

The Capability Maturity Model Integration [5] describes the characteristics of effective processes. It is a process improvement approach that provides organizations with the essential elements of effective process. CMMI best practices enable organizations to do the following:
- link management and engineering activities to their business objectives,
- expand the scope of and visibility into the product lifecycle and engineering activities to ensure that the product or service meets customer expectations,
- implement more robust high-maturity practices,
- incorporate lessons learned from additional areas of best practices,
more fully comply with relevant ISO standards,
- address additional organizational functions critical to their products and services.

This model can be used in such a way as to define the Maturity Level (ML) of the organization, taking into account its software process, as to guide an improvement process work.

There are five MLs and each of this level acts as a foundation for the following level and indicates the capability of the organization software process.

In ML 1 – Initial, the success of the organization depends on the efforts of the people.

In ML 2 – Repeatable, organization already possesses a plan for new projects based on its specifications and experiences of similar projects.

For ML 3 – Defined, there is existence of a standard software process for all the organization.

In ML 4 – Managed, the organization keeps a quantitative control of the software process quality and of the software product quality.

At ML 5 – Optimizing, organization provides a continuous improvement of its software processes in an organizational way.

The latest version of CMMI ver 1.2 was released in August 2006. There are 3 constellations of CMMI in the new version: CMMI Development, CMMI Services and CMMI Acquisition.

CMMI for Development Ver 1.2 consists of 22 process areas with capability or maturity levels.

CMMI should be adapted to each individual company, therefore companies are not “certified.” A company is appraised (e.g. with an appraisal method like SCAMPI) at a certain level of CMMI.

The CMMI provides a framework for process improvement that consists of Process Areas (PAs), to be influential in various aspects of the development process and resultant software quality.

The processes are divided into four categories namely:
- Process Management,
- Project Management,
- Support and
- Engineering.

Each ML focuses on different processes with these four categories.

The PAs contain goals and best practices, specific and generic, and subpractices that the employees must control to reach the goals [9].

METHOD OF INTEGRATION OF ISO 9126 AND CMMI

The integration of a process model and a standard for software product quality propose practical alternative for software producing organizations. A method is to analyze examples of a software process model that has potential for the use of ISO 9126 standard.

The activities that encompasses PAs describe how to establish the software process capability. Implementing the norm ISO 9126 in the PAs of the activities define what must be done to establish the software process capability.
In other words, the CMMI based process improvement can result in better project performance and higher quality products if the measures of performance and some related practices are used in conjunction with the ISO 9126 norm.

There are a lot of chances of CMMI application points of ISO 9126 concepts use. Using the ISO 9126 norm in examples of the CMMI must be simple and easy to implement, some examples are described:

Requirements Management (RM) – a Process Area for ML 2: Repeatable

The purpose of RM is to manage the requirements of the project's products and product components and to identify inconsistencies between those requirements and the project's plans and work products.

In order to add value to this purpose the incorporation of ISO 9126 into software process is to establish mutual agreement between the requirements provider and requirements receiver so that commitment to the requirements is obtained from the project participants.

Organizational Process Focus (OPF) – PA for ML 3: Defined

The purpose of OPF is to plan and implement organizational process improvement based on a through understanding of the current strengths and weaknesses of the organization's processes and process assets.

The improvements of the organizational processes with the incorporation of ISO 9126 may be obtained from various resources including product evaluation activities that will improve organization's overall software process and product capability.

Causal Analysis and Resolution (CAR) – PA for ML 5: Optimizing

The purpose of CAR is to identify causes of defects and other problems and take action to prevent them from occurring in the future.

The incorporation of ISO 9126 into process is the identification of problems in reaching goals related to the product characteristics [9].

Method to make the integrated model CMMI and ISO 9001:2008

With applied the concise N-N mapping for the integrated model while the concise N-N mapping was derived by using a N-N mapping some changes need to be made to the mapping table. First, many practices have dependencies among one another, and the N-N mapping table does not preserve these dependencies. Therefore, we need to place dependent practices in an adequate place together. Second, the concise N-N mapping may possibly make the
relationship between CMMI practices and ISO 9001:2008 requirements too simple. Thus, in order to resolve this, some additional explanations on the relationships between CMMI practices and ISO 9001:2008 requirements should be added to the integrated model. Third, granularity of the integrated model is another issue. CMMI assesses that a process area is satisfied only when all the goals in the process area are satisfied. In other words, each goal in the process area is a primitive unit to be assessed.

However, if the goals in CMMI are selected for the target of the integrated model, then the relationship between ISO 9001:2008 and CMMI can become “All Match”. Therefore, practices in each process area are selected as the CMMI-side target of the integrated model.

After developing a concise N-N mapping, CMMI practices were merged with ISO 9001:2008 requirements using the method [15].

CONCLUSIONS

we proposed an integrated model by inserting CMMI practices into ISO 9001:2008 requirements. And ISO 9126 We expect that this model will be helpful to implementation of Quality Management organizations and System based in ISO, it will allow existing ISO assets to be re-used without redundant efforts. In addition, the model will help organizations to perform gap analysis and maintain their quality manual without any difficulty when adopting CMMI. And, even if an organization does not have ISO registration but plans to adopt CMMI only, the organization will be able to implement ISO 9001:2008 and CMMI simultaneously by this integrated model for the software’s product. In future research, we plan to conduct experiments to confirm how effective this model will be real application..

REFERENCES

[24] Gartner Analyst, IT Persepective: Balancing Six Sigma and the Capability Maturity Model (CMM/CMMI),

