ISSN: 2301-5690

INTERNATIONAL CONFERENCE

The Second International Conference on Engineering and Technology Development

2ªICETD 2013

27, 28, 29 August 2013, Bandar Lampung, Indonesia

PROCEEDINGS

Bergelander alle interdiet die bester bei witternational internet onterstative die bester transfer die bei geste bester bester bei

Hosted by : Faculty of Engineering and Faculty of Computer Science, Bandar Lampung University (UBL), Indonesia

ZndICETD 2013

THE SECOND INTERNATIONAL CONFERENCE ON ENGINEERING AND TECHNOLOGY DEVELOPMENT

> 28 -30 January 2013 Bandar Lampung University (UBL) Lampung, Indonesia

PROCEEDINGS

Organized by:

Faculty of Computer Science and Faculty of Engineering Bandar Lampung University (UBL) JI. Zainal Abidin Pagar Alam No.89 Labuhan Ratu, Bandar Lampung, Indonesia Phone: +62 721 36 666 25, Fax: +62 721 701 467 website :www.ubl.ac.id

PREFACE

The Activities of the International Conference is in line and very appropriate with the vision and mission of Bandar Lampung University (UBL) to promote training and education as well as research in these areas.

On behalf of the Second International Conference on Engineering and Technology Development (2^{nd} ICETD 2013) organizing committee, we are very pleased with the very good response especially from the keynote speaker and from the participans. It is noteworthy to point out that about 80 technical papers were received for this conference.

The participants of the conference come from many well known universities, among others : University Kebangsaan Malaysia - Malaysia, APTIKOM - Indonesia, Institut Teknologi sepuluh November - Indonesia, Surya Institute - Indonesia, International Islamic University - Malaysia, STMIK Mitra Lampung - lampung, Bandung Institut of Technology - Bandung, Lecture of The Malahayati University, B2TP - BPPT Researcher - lampung, Starch Technology Center - Lampung, Universitas Islam Indonesia – Indonesia, Politeknik Negeri Malang Malang, University of Kitakyushu – Japan, Gadjah Mada University – Indonesia, Universitas Malahayati – Lampung, Lampung University – lampung, Starch Technology Center - Lampung, Universitas Riau - Riau, Hasanuddin University -Indonesia, Diponegoro University – Indonesia, King Abdulaziz University – Saudi Arabia, Parahyangan Catholic University – Indonesia, National Taiwan University-Taiwan, Surakarta Christian University – Indonesia, Sugijapranata Catholic University - Indonesia, Semarang University - Indonesia, University of Brawijaya -Indonesia, PPKIA Tarakanita Rahmawati – Indonesia, Kyushu University, Fukuoka - Japan, Science and Technology Beijing - China, Institut Teknologi Sepuluh Nopember – Surabaya, Researcher of Starch Technology Center, Universitas Muhammadiyah Metro – Metro, National University of Malaysia – Malaysia.

I would like to express my deepest gratitude to the International Advisory Board members, sponsor and also to all keynote speakers and all participants. I am also gratefull to all organizing committee and all of the reviewers who contribute to the high standard of the conference. Also I would like to express my deepest gratitude to the Rector of Bandar Lampung University (UBL) who give us endless support to these activities, so that the conference can be administrated on time

Bandar Lampung, 29 August 2013-08-26

Mustofa Usman, Ph.D 2nd ICETD Chairman

PROCEEDINGS

2nd ICETD 2013

The Second International Conference On Engineering And Technology Development

28 - 30 January 2013

INTERNATIONAL ADVISORY BOARD

Y. M Barusman, Indonesia Ahmad F. Ismail, Malaysia Mustofa Usman, Indonesia Moses L. Singgih, Indonesia Andreas Dress, Germany Faiz A.M Elfaki, Malaysia Warsono, Indonesia Raihan Othman, Malaysia Zeng Bing Zen, China Tjin Swee Chuan, Singapore Khomsahrial R, Indonesia Rony Purba, Indonesia Alex Tribuana S, Indonesia Hon Wei Leong, Singapore Imad Khamis, USA Rozlan Alias, Malaysia Rudi Irawan. Indonesia Gusri Ibrahim, Indonesia Jamal I Daoud, Malaysia Riza Muhida, Indonesia Heri Riyanto, Indonesia Agus Wahyudi, Indonesia Lilies Widojoko, Indonesia

PROCEEDINGS

2nd ICETD 2013

The Second International Conference On Engineering And Technology Development

28 - 30 January 2013

STEERING COMMITTEE

Executive Advisors Dr. M. Yusuf S. Barusman Andala R. P. Barusman, MA.Ec

> **Chairman** Mustofa Usman, Ph.D

Co-Chairman Dr. Ir. Hery Riyanto, MT Ahmad Cucus, S.Kom., M.Kom

Secretary Marzuki, S.Kom., M.Kom Maria Shusanti Febrianti, S.Kom., M.Kom

Technical Committee

Indyah Kumoro, ST. IAI Ardiansyah, ST., MT Sofiah Islamiah, ST. MT Taqwan Thamrin, ST., MSc Dina Ika Wahyuningsih, S.Kom Agus Sukoco, M.Kom Hj. Susilowati, ST. MT Haris Murwadi, ST, MT Robby Yuli Endra, S.Kom., M.Kom Fenty Ariani, S.Kom., M.Kom

Treasure

Samsul Bahri, SE Dian Agustina, SE

PROCEEDINGS

2nd ICETD 2013

The Second International Conference On Engineering And Technology Development

28 - 30 January 2013

ORGANIZING COMMITTEE

Chair Person Dr. Ir. Hery Riyanto, MT

Vice Chair Person Yuthsi Aprilinda, S.Kom., M.Kom

> **Treasure** Dian Agustina, S.E

Secretary Aprizal, ST. MT Ir. Tjejeng Sofyan, MM Ir. Muhammad Zein, MT Ir. Bambang Pratowo, MT

Special Events

Ir. Juniardi, MT Ir. Indra Surya, MT Ir. Sugito, MT DR. Baginda Simaibang, M.Ed Berry Salatar, S.Pd Yanuar Dwi Prasetyo, S.Pd.I., M.A

Receiptionist

Ir. Najamudin, MT Kunarto, ST. MT IB. Ilham Malik, ST. MT Ir.A Ikhsan Karim, MT Ir. Asikin, MT Usman Rizal, ST., M.MSi

Transportation and Acomodation

Irawati, SE Desi Puspita Sari, S.E Tanto Lailam, S.H 2nd International Conference on Engineering and Technology Development (ICETD 2013) Universitas Bandar Lampung Faculty of Engineering and Faculty of Computer Science

Ilyas Sadad, S.T., M.T

Publication and Documentation

Ir. Indriati Agustina Gultom, M.M Noning Verawati, S.Sos Hesti, S.H Rifandi Ritonga, SH Violita, S.I.Kom

Cosumption

Dra. Yulfriwini, M.T Wiwin Susanty, S.Kom., M.Kom Fenty Ariani, S.Kom., M.Kom Reni Nursyanti, S.Kom., M.Kom Erlangga, S.Kom Arnes Yuli Vandika, S.Kom

Facility and Decoration

Siti Rahma Wati,SE Dina Ika Wahyuningsih, S.Kom Zainal Abidin, SE Ahyar Saleh, SE Eko Suhardiyanto Wagino Sugimin

Table Of Content

Drganizing Committee Γable Of Content	i v
Keynote Speaker	
Recent Advances in Biofuel Cell and Emerging Hybrid System Abdul Aziz Ahmad and Raihan Othman	1
2. Waste Utilization Study Tailing Gold Mine in Way Linggo-Lampung, as Fin Aggregate Materials for Producing Mortar Materials based on concept of Green Technology Lilies Widojoko & Susilawati.	e 1 8
 Infrastructure Health Monitoring System (SHM) Development, a Necessity fo Maintance and Investigation Prof. Dr. Priyo Suprobo, Faimun, Arie Febry	r 7
4. Four Phases Quality Function Deployment (Qfd) By Considering Kano Concept Time And Manufacturing Cost Prof. Dr. Moses L Singgih, Dyah L. Trenggonowati, Putu D. Karningsih 2	, 2

Speaker

1.	Comparative Analysis for The Multi Period Degree Minimum Spanning Tree Problem
	Wamiliana, Amanto, and Mustofa Usman
2.	Choosing The Right Software In Supporting The Successful of Enterprise ERP Implementation Yodhie Yuniarthe, Idris Asmuni
3.	Climate Adaptive Technology In Maintaining Vernacularism Of Urban Kampong Case study: KampungAdat (Indiginous) Mahmud, Bandung District,West Java Marcus Gartiwa
4.	The Prospect Of Diesohol In Facing Fossil Fuel Crissis M.C. Tri Atmodjo
5.	The Potential Of Agriculture And Forestry Biomass Wastes As Source Of Bioenergy Hardoyo
6.	The Importance of Education Facility as Sustainable Urban Generation Tool Fritz Akhmad Nuzir, Haris Murwadi and Bart Julien Dewancker
7.	The implementation of Secton Method for Solving Systems of Non Linear Equations Nur Rokhman
8.	Quality Control Analysis Into Decrease The Level Defects On Coffee Product Heri Wibowo, Sulastri and Emy Khikmawati
9.	Public Transportion Crisis In Bandar Lampung Ida Bagus Ilham Malik
10	 Geospatial Analysis of Land Use Change in Way Kuripan Watershed, Bandar Lampung City Candra Hakim Van Rafi'i1., Dyah Indriana Kusumastuti2., Dwi Jokowinarno
11	. Material Utilization Technology Of Agriculture And Forestry Waste Hardoyo
12	. The Supply Chain System Of Cassava On The Tapioca Industry Hardoyo
13	 Glass Technology In Natural Light Glasses On Aperture Element In The Architecture World Muhammad Rija & MT Pedia Aldy

14. An Eksperimental Permeable Asphalt Pavement Using Local Material Domato Stone On Quality Of Porous Asphalt				
Firdaus Chairuddin, Wihardi Tjaronge, Muhammad Ramli, Johannes Patanduk				
 Coordination Of Architectural Concepts And Construction Systems Eddy Hermanto. 129 				
 Seismic Assessment of RC Building Using Pushover Analysis Riza Ainul Hakim. 136 				
 Viscosity and Liquidity Index Relation for Elucidating Mudflow Behavior Budijanto Widjaja and Shannon Hsien-Heng Lee. 				
18. The Use of Pozzolanic Material for Improving Quality of Strontium Liquid Waste Cementation in Saline Environment during Nuclear Waste Immobilization Process				
Muhammad Yusuf, HayuTyasUtami, Tri SulistiyoHariNugroho, SusetyoHarioPutero				
 Geospatial Analysis Of Land Use And Land Cover Changes For Discharge At Way Kualagaruntang Watershed In Bandar Lampung Fieni Yuniarti, Dyah Indriana K, Dwi Joko Winarno				
20. Wifi Network Design For High Performance Heru Nurwarsito, , KasyfulAmron, BektiWidyaningsih				
 Studi on The Efficiency Using Nature Materials in The Structural Elements of Reinforced Concrete Beam Yasser, Herman Parung, M. Wihardi Tjaronge, Rudy Djamaluddin 167 				
 The Research Of Slow Release Nitrogen Fertilizer Applied In Sugarcane (Saccharum Officinarum) For Green Energy Bioethanol M.C. Tri Atmodjo, Agus Eko T. Nurul Rusdi, Sigit Setiadi, and Rina 179 				
23. Energy Utilization Technology Of Agriculture And Forestry Waste Hardoyo				
 Implementation Of Fuzzy Inference System With Tsukamoto Method For Study Programme Selection Fenty Ariani and Robby Yuli Endra				
25. The Analysis of Video Conference With ITU Standarization (International Telecommunication Union) That Joining in Inherent At Bandar Lampung University Maria Shusanti F, Happy Reksa				

 26. The E-internal audit iso 9001:2008 based on accreditation form assessment matrix in study program for effectiveness of monitoring accreditation Marzuki, Maria Shusanti F
27. The Developing Of e-Consultations For Effectiveness of Mentoring Academy Ahmad Cucus, Endang K
 The Evaluation of information system performance in higher education case study with EUCS model at bandar lampung university Reni Nursyanti, Erlangga.
 The Analysis Of History Collection System Based On AndroidSmartphone With Qr Code Using Qr CodeCase Study: Museum Lampung Usman Rizal, Wiwin Susanty, Sutrisno
 30. Application of Complaint Handling by Approach Model of ISO 10002 : 2004 to Increase Complaint Services Agus Sukoco and Yuthsi Aprilinda.
 Towards Indonesian Cloud Campus Taqwan Thamrin, Iing Lukman, Dina Ika Wahyuningsih
32. Bridging Router to ADSL Modem for Stability Network Connection Arnes Yuli Vandika and Ruri Koesliandana
 33. The Effect of Use Styrofoam for Flexural Characteristics of Reinforced Concrete Beams Yasser , Herman Parung, M. Wihardi Tjaronge, Rudy Djamaluddin 261
34. The Estimation Of Bioethanol Yield From Some Cassava Variety M.C. Tri Atmodjo
 35. Effect of Superficial Velocity of Pressure Difference on The Separation of Oil And Water by Using The T-Pipe Junctionl Kms. Ridhuan and Indarto
 36. The use of CRM for Customer Management at Cellular Telecommunications Industry Ayu Kartika Puspa
 37. Indonesian Puslit (Centre Of IT Solution) Website Analysis Using Webqual For Measuring Website Quality Maria Shusanti Febrianti and Nurhayati.
 The E-internal audit iso 9001:2008 based on accreditation form assessment matrix in study program for effectiveness of monitoring accreditation Marzuki, Maria Shusanti F

2 nd International Conference on Engineering and Technology Development	ISSN 2301-6590
(ICETD 2013)	
Universitas Bandar Lampung	
Faculty of Engineering and Faculty of Computer Science	

 Enhancing Quality Software Through CMMI-ISO 9001:2008and ISO 9126 Agus Sukoco
 Value Analysis Of Passenger Car Equivalent Motorcycle (Case Study Kartini Road Bandar Lampung) Juniardi, Aflah Efendi
 Alternative Analysis Of Flood Control Downstream Of Way Sekampung River Sugito, Maulana Febramsyah.
 Analysis Of Fitness Facilities And Effective Use Of Crossing Road Juniardi, Edi Haryanto
 Study On Regional Development Work Environment Panjang Port Lands In Support Bandar Lampung City As A Service And Trade Ir. A. Karim Iksan, MT, Yohn Ferry.
44. Analytical And Experimental Study Bamboo Beam ConcreteHery Riyanto, Sugito, Juli
 45. Comparative Analysis Of Load Factor Method Static And Dynamic Method (Case Study Akdp Bus Route Rajabasa - Bakauheni) A. Ikhsan Karim, MT., Ahmad Zulkily
 Optimization Utilization Of Water Resourcesdam Batutegi Using Method Of Linear Program Aprizal,HeryFitriyansyah
 47. Characteristics Generation Traffic Patterns And Movement In Residential Area (Case Study Way Kandis Residential Bandar Lampung) Fery Hendi Jaya, Juniardi,
 Use Study On Slight Beam Reinforced Concrete Floor Platein Lieu Of Scondary Beam Hery Riyanto, Sugito, Lilies Widodjoko, Sjamsu Iskandar
 Observation Of The Effect Of Static Magnetic Field 0.1 Mt On A-Amylase Activity In Legume Germination Rochmah Agustrina, Tundjung T. Handayani, and Sumardi
 50. Effectiveness Analysis Of Applications Netsupport School 10 Based Iso / Iec 9126-4 Metrics Effectiveness Ahmad Cucus, Nelcy Novelia
51. Omparative Performance Analysis Of Banking For Implementing Internet Banking Reza Kurniawan

COORDINATION of ARCHITECTURAL CONCEPTS and CONSTRUCTION SYSTEMS

Case Study:

The basic principles of building applications on Garuda II and sustainable development at the Dr.Kariadi-hospital in Semarang.

Eddy Hermanto. (S3 Engineering Student of Architecture and Urban)

Abstract: This paper reported the implementation of coordination between architectural concept and construction system in the area of dr. Kariadi hospital, in Semarang central Java. In principle, the coordination in the design-construction process can achieve the benefits of development by improving the quality of technical design. The use of Tartan Grid concept closely related to the coordination module that integrates seamlessly blend with the application of the concept of green architecture and design quality indicator (dqi) in architectural design can improve the quality of technical design. Furthermore, the construction phase was green construction methods will improve the performance of related construction projects of sustainable keyword: minimizing waste and pollutants, and achieved self sufficient. Matters are very useful for the future utilization of the building through post-occupancy evaluation.

Keywords: system, tartan-grid, technology, sustainable development.

1. INTRODUCTION

Fig.1.BASIC FRAMEWORK MINDSET

The study was conducted at area hospitals Dr.Kariadi, in Semarang, which is being carried out and the construction of several tall buildings on the other side there is a protected historic building (conservation) which functioned for the general administration of the hospital.

Construction industry. in principle, is a project development activities are constrained execution time, different characteristics of each project, taking place once completed, which consists of its phase process: planning (master plan, feasibility study), design / drafting (basic / concept, preliminary, engineering), detail procurement (procurement), construction / physical implementation, acceptance, operation and maintenance. Development of the construction industry has now reached from Conventional. Rational until industry especially in the scope of the use of technologies that are industrializing, then the goal as described above to be

more of a challenge to be achieved so that the project which has one of the characteristics: large volume, high technology, high risk, using a multi-year contract sides need consideration: efficient, effective and accountable. In this context, one of the things that led to the success of construction projects is through the establishment of а construction project organization is partnering/alliance.Forms of partnering in principle follows the basic pattern and the shape of the relationship in Client-Designer-Contractor (CDC) (2,9).

The basic principle of the construction projects that have been put forward by: (1, 2), as the Iron Triangle consisting of the cost, time and quality, which is called the external triangle according to (9). The triangular relationship of the above to manage the three main components of project management: Time, Quality, Cost (TOC) as a success. Furthermore, the success of a construction project initially measured based TQC, but appropriate development now is an element of customer satisfaction including (6). The success of achieving quality of building construction projects are very closely related to the application of quality management worth and worth doing at all stages of the project (7). In a construction project there are stages where the design and construction phases of these two stages together have a major influence and contribute to determine the process to achieve the final product-quality especially on technical sides.

If the sequence is summarized in the development process, the things mentioned above will consist of: preparation includes green technology applications; site development and green or circumstances existing land / sites, green design and human-construction bionomic. All of these items starting from the use of The Tartan-grid closely related to the coordination-module. Now the green concept, in line with the global warming issue and the Millennium Development Goals (MDGs, especially the seventh point: ensure environmental sustainability, and eighth point: develop a global partnership for development) where the target based on the achievement of certain time-existence strengthens the role of architecture as science and art.

The concept of Tartan-column grid which is a blend of the interface and the distance of each column are the size dimensions of the corner column (20x20 CM2) and middle columns (10x10 CM2) are Necessary to support the roof providing a full freedom in moving the infill components. The Tartan-grid applications generate a regularity in the construction of buildings related to the architectural, structural, mechanical and outdoor design, electrical. space preparation of working space for the physical development of contractor activities, coordinating all of the modules in a system.

In the design process of the building needed a tool to define and evaluate the substance of the design (Design Quality Indicator / DQI). Operational applications based on sideby-side: the impact, build quality, and functionality. These three elements each have overlapping areas (as added value) and the third focal point is the overlapping area of excellence (3). Vitruvius on architecture principles in his book 'ten books in architecture', asserted his opinion that the basic principle should show as utility structure (the purpose and use), Firmitas (materials and construction) and Venustas (proportion and building scale).Matters of the has undergone significant changes that building designers are faced with a variety of quality improvement requirements and constraints that must be met, for example: buildings are designed in harmony environment (green building) and innovative (7).

Faculty of Engineering and Faculty of Computer Science

In principle, the system at this stage of the design process of a building characterized as buildings that are generated through: definition of scope, analvzed and formed into threedimensional and has a specific nature. So in the process of construction of the building there is a design process that determines the success of the quality of the building. In the design process should be sufficient to control the performance of the main section. It continues to the end of the construction process so that the project goal is reached (5). Caused by the project team's performance does not meet the quality of the result in reworking (reworks) are many times that lead to exceeding the project schedule. This is a fundamental weakness of the building because the building the appearance aspect of the system was not achieved (10).

It is therefore very important and essential for any development of land in an area, especially in urban areas to prepare for the construction of the building and its environment in an efficient, effective and accountable as long as possible, by the use of environmentally friendly technologies.

2. METHODOLOGY

Identify the problem in this study: how the coordination of architectural concepts and construction system can run smoothly? Respondents consisted of project owners, project technical team, consultant designers, construction management consultant, Public Works Department of Human Settlements central Java, all of which carried an interview. The necessary data is primary data, taken directly from the sampling unit with equipment / tool with a list of questions / questionnaires.

The objectives of the study are to determine design of the developed area;

and to develop a model of system to achieve building performance.

3. RESULTS AND DISCUSSION

N	Ohner of the Davies Deserve	0	Human
Nume	stage of the Design Process	sage of the	Bionomic
a		Construction Process	(OPERATIO
			N
<u> </u>			
1	Basic Concept Design:	Site preparation:	Compared on
	Annalise and then the West and	61	Lonstruction
	Grouping proticm (second and	Site preparation:	industry in
	Cunayain, 1997):	• Delign Keview	Indoncaia
	 STAKEHOLDEK 	 Create a timeline 	requires:
	MANAGERIAL	of project activities	• Vermassion
	TECHNICAL	* Budget	et the
	 EQUIPMENT/ENVIRONMENT 	implementation	ncighborna
	AL 🗖	pian	ed .
	CULTURAL/POLITICAL	Project quality	population
	■/	plan: matenala,	project
	Application/Implementation:	method of	Dutch
		implementation,	language:
	Conducted more detailed	the technical	Herordenin
	claboration of LASIDCOM: Land,	requirements that	8
	Acquisition, Survey, Investigation,	must be met.	Ordenantic
	Design, Construction, Operation,	✓ Exploration of)
	Maintenance.	materials available	 Building
		in the market	pemit
	MANAGEMENT	✓ Project	(IMB)
	(PARTNERING)	procurement plan:	 Environme
	> DESIGN COLLABORATION	materials,	ntal Impact
	> TRINT	couloments and	Assessment
	> OPEN COMPUTINICATION	tools, skilled labor	/EIA (in
	> DRX RUADING	and unskilled,	Indonesia
		working methods.	AMDAL)
	SUBSTANCES:	Regulation/ordinan	'
	* KNOWLEDGE	CC BURYEY	
	MANAGEMENT	✓ Mobilization and	
	CONSTRUCTABILITY/B	denobilization of	
	UILDABILITY	couloment	
	 QUALITY TECHNICAL 	Preparation of	
	DESIGN	skilled labor and	
	REGULATION	unakilled	
		/ Cite annualiza	
		Construction	
		- definition	
		nemod	
		MANAGEMENT	
		(DADTNEDING)	
		(FARTNERING):	
		- Construction	
		Marine	
		· vianning: supply	
		Chan	
		Management	
		(acm)	
		- Coordination,	
		Monitoring,	
		Evaluation,	
l		Controlling.	

2 Duign Development: MANAGEMENT (PARTNERING): > COORDINATION, MONITORING, EVALUATED CONTROLLING > DESIGN REVIEW > APPLICATION of (PRINCIPLE of DESIX	Site development → Construction construction: Industry Industry / Design Review Industry Industry / Total Quality requires: Management 0 Handow / Total Quality of / Total Quality of / Shop Drawing → construct on work / Shop Drawing → construct on work
MANAGEMENT (PARTNERING): ► COORDINATION, MONITORING, EVALUATIO CONTROLLING ► DESIGN REVIEW ► APPLICATION of f PRINCIPLE of DESIX	 ✓ Dezign Review ✓ Total Quality requires: Management ✓ Rodeview ✓ TOM-QC+QA) of ✓ Shop Deaving → construct Action plan → on work
OFTIMIZATION and GRE DESIGN COORDINATION DESIGN DOCUMENTS SUBSTANCES: * KNOWLEDGE MANAGEMENT * CONSTRUCTABILITY * BUILDABILITY * QUALITY TECHNIC DESIGN * GREEN DESIGN * REGULATION	 zecosta is in y in the second process is marked in the second process is an exploration of the second process is an exploration in the second process is a second proces is a second proces is a second process is a
Negati ve Impae t	Change order, Building Construction performance performance is not is n achieved, Construction achieved. failure. Building

2

a. Bid
Bi i

132

The Tartas	8-10 floor high	Canatruction	Onco Second
24	building desire	Antoinin	Desires apace
perse :	Tatan Art	Activities (ACA	A Tester A 12
from the initial	Finan One	vianan una	 Inten Ond:
concept Tartan	concept: Size	concept: so the	concept: so the
Onid: Size	comer columns	coordination	coordination
column comer	and the columns	module is 300 cm.	module is allo
20/20 CM2, the	between column	The distance	cm.
columna	comer 80/80CM2	between the edge	 Distance
between	and spacing	of the column	effective width
column comer	between columna	structure with	of the road
0/10 CM2 and	800 cm.	tower erane	(right of way) is
pacing	So the coordination	column is 800cm.	800cm
between	module is 800 cm.	Short sleeve and	· In the event of
columna 100	> Distance between	long sleeve from	force majeure,
CM.	buildings is 800cm	the tower crane	the outdoor
	it is sufficient for	that has applied	space is used as
	the functioning of	cach size 800cm	an emergency
i 1	natural air	and 2400cm.	hospital
i IV	movement, lighting	Theid office	implemented a
	the sky for the side	building and	basic module
SEING	and rear of the two	office building	building tents
DEVELOPED:	buildings that face	contractors is a	with
for MULTI	cach other,	two-storcy	4x800x800M2z
ane 2008	infiltration wells	tempomry;	ize. Distance
SUNCTION	(biogen,	800x2400M2	between them
	biorctention),	size; second floor	0.5 x800cm.
/	sower and	for contractor	 Distance
i /	landscaping.	activities; first	between trees is
. '	➤ Parking at the	floor to perform	800M.
	building with the	activities of	 Street lighting
	pattern of double	meetings,	columna to
	loaded comider	activities for	800cm tall.
	where width of the	construction	· Draign outdoor
	road for two-way	man ag ement	space can be
	car traffic is sized	consultants and	used as a multi-
	800cm, the size of	technical team	function
	a parking space is	owner, lavatory.	activity, for
	400cm long and	Construction road	example: brisk
	there are three cars	width is 800cm.	walking
	for every distance	Size of a	activities,
	between columns.	warchouse	cycling, had a
	⊁Wide ramg	without roof	mean size of
	connecting the	2x800x3200M2,	1600x3200M2
	floor is 400cm. The	and space for	 Each parking
	width of the rang	vehicle operating	space has three
	connecting the	heavy equipment	
	floor is 400Cm	is 3200x3200M2.	800x400CM2+
	where the distance	Road construction	to where the
	from the ground	agant from the	width of the
	floor to the	consumer (health	road for traffic
	basement floor is	care services)	flow in \$0004
	320cm.	where there is	 Remaining width and
	> Distance of floor to	only one point of	- Anny water of
			outer space to

•

	floor is 400cm. The	interaction traffic	the busement
	average distance	flow and traffic	floor is 400cm.
	from floor to	arran gementa are	 Rainwater
	ceiling is 270cm	made with	entel ment
	> Medium - voltage	management	Julia
	alastical aread		action of the
	building of MALia	A The wilds of the	pattemen aan
	building of VLN is	T ine width of the	spines based on
	800x800502.	chumnee / exit et	the size of the
	> Power house in the	construction land	space module
	basement has a size	ia 800cm.	800x800M2.
	of (800 +400)	At each distance	 In the design of
	x2400M2	of 800cm for	minwater
	> Ground water tank	strengthening the	network control
	in open space has a	famework of	basin at any
	size of	scaffolding are	distance
	800x400x400CM3	diaronally brace	2400
	> Chiller plant on the	the forme in three	3200cm and
	ton of Ground	dimensions	and and
	unter tenk and	d de ande distance	amail catenments
	WWTD	of \$50 and the day	WCIII OR CECR
	N W IF	of souch to the	spacing 800cm
	Fine sewage	uniny gra	Design of
	treatment plant	honzontal	outdoor space
	(WWIP) has	(plumbing,	for parking:
	3200x800x400M3	ducting) applied	twelve
	size tub with four	to the main	ambulances are
	units, cach	hanger. Similarly,	2x6x400CM2
	collector has	for vertical use	shaned double
	800x400x200M3	network utility	leaded comidee
	nine.	main clamp.	 A share contracts
	Medical yas central	+ Cable networks	Strail-over as
	building has a size	such as horizontal	soco control
		mble inv has a	has an effective
	800-2400-3203/8	aidh is its in	and of the
	A louder of the	-C (A AA (CA-	nverbed as the
	 Location of the 	65 40, 30, 100cm	water flow
	hydrant box / pilla	TAL INC UNC OF	400cm, 400-
	hydrant application	termination of the	800cm depth of
	designed jointly	project, the rest of	the river, and
	position at any	the land for the	the banks on
	distance 2400cm or	collection of	either side of
	3200cm.	unused work has	the river each
	> If the application	multiples	horizontal
	needs to be done	800x800M2 size.	width of
	post-tension		400
	concrete in		Indene
	effectively applied		darias dari
	stating on the		design done on:
	diatance between		the canks of the
	the selvers is		RYCE SCRICE 25 2
	and columns is		RVC YICW.
	anneur		
/·······			

Table I Developing of The Tarian Grid io: 8-10 floor high Building Devain, ConstructionActivities and Open Space Devign.

The main characteristics of the coordination of architectural concepts in building design with construction system is a key to reduce the uncertainty of the final result as the performance of a building construction project. In this case the most important is the application of the system must be able to ensure coordination in the design and construction process so there is no conflict or disputes, rework, and even the failure of the construction. To achieve success. the coordination must be optimized in terms of the substance of design in sustainable construction management.

Based on the planning stage, Based on the planning stage, then it should be considered important aspects, such as the scope of work, the proper equipment, competent personnel, working methods and organizational culture to support the success of the design and construction process as a whole project. post-construction Similarly, phase depends on strategic decisions that have been made in the planning stage. Finally, at the time held the post occupation evaluation will achieve optimal building performance.

Figure.1.shows the basic framework mindset. Framework shows the process and substance of the most influential and interact within the system boundary. If in it there is a small effect due to the impact of design quality is achieved, then there is sustainable development.

Table.1.shows that Stage of the Design Process in which there are elements within each classification grouping interact internally activities affect the next stage of construction process in which an interaction of internal activity, finally there is the human bionomic stage of the process.

Table.2. shows that The Tartan Grid concept developed multi role function has a significant influence on the following aspects: 8-10 floor high building design, construction activity, and open space design. Occurred relative Faculty of Engineering and Faculty of Computer Science

similarity in coordination modules: 80-800-80cm. In this case, the various substances design object has a correlation with the size of the basis in coordination module.

4. CONCLUSION

This study, however, indicate that the importance of the role that design should be able to achieve an increase in the optimal design of technical quality in the process of building projects. Design coordination will reduce the impact of construction failures, reworks and change order of items in the contract work. Contrary to the above, the technical quality of design coordination produces a better design from different point of view. The Author will continue study in monitoring the performance of postoccupancy evaluation related to the health care activities in this building and development of other buildings.

5. ACKNOWLEDGEMENTS

The Author would like to thank to the Department of Architecture, Engineering Faculty, Diponegoro University; and the General Hospital Dr.Kariadi, Semarang.

6. **REFERENCES**

- 1. Akintola Akintoye, Eamon Fitzgerald, 1995, **Design and build: a survey of architects' views**, *Engineering*, *Construction and Architectural Management J*, Vol. 2 Iss: 1, pp.27 -44
- 2. Atkinson, 1999, Project Management: Cost, Time and Quality, Two Best Guesses and A Phenomenon, It's Time to Accept Other Success Criteria, Int'l Journal Project Management, 17(6), 337-342.
- 3. Anonym, "Getting Value for Money from Construction Projects through Design", NATIONAL AUDIT OFFICE/NAO (Commission of Architecture Building Environment/CABE, Organization of Government Commerce/OGC).
- 4. Habraken, N.J., 1972, An Alternative to Mass Housing, Praeger Publisher.

- Haponava Tatsiana and Saad Al-Jibouri, 2010, "Establishing influence of design process performance on end-project goals in construction using process-based model", Benchmarking: an International Journal, Vol. 17 Iss: 5, pp.657 – 676.
- Liu and Walker,1998, Evaluation of Project Outcomes, J Constr Mngt Econm, 16(2), 209-219.
- Morris Hicky Morgan, 1960 (Memon, 2007), The Ten Books On Architecture. Dover Publication
- Neale RH and Neale DE, 1989, Project Management: Construction Planning, Thomas Telford HQ London
- 9. Newcombe, 2000, The Anatomy of Two Projects: A Comparative Analysis Approach, *Int'l Journal of Project Management*, 18(3), 189-199.
- 10. Xiao.H and Proverbs, 2001, . Xiao and D. Proverbs, "The performance of contractors in Japan, the UK and the USA," International Journal of Quality & Reliability Management, vol. 19, pp. 672-687, 2002.

9

11 11

.

-

4 4

1-1 1-1

(P) (P) (P)

Ţ

÷

(T) (T)

-

JI. Z.A. Pagar Alam No.26 Labuhan Ratu Bandar Lampung 35142 Phone: +62 721 701463 www.ubl.ac.id Lampung - Indonesia

conveighte02013