Evaluation Calculation of Flood Design with Hydrograph Method Nakayasu, Limantara and Snyder in Catchhement River Way Tebu

Yasril¹, Aprizal², A Nurhasanah²

¹ Graduate Student, Master of Engineering Program, University of Bandar Lampung.

^{2.} Department of Civil Engineering, Faculty of Engineering, University of Bandar Lampung

Abstract. Synthetic unit hydrograph is a synthetic based hydrograph of watershed parameters. One way to find out the magnitude of the flood watershed of Way Tebu River Basin is to predict the amount of flow from existing rain data, Therefore rainfall data as the main input of rain diversion process becomes a very important thing and must have a high level of accuracy. The research presents a simple approach to determine peak discharge and unit hydrograph form in the Waytebu River Basin. Several methods of unit synthesis hydrograph such as Nakayasu, Limantara and Snyder are used to calculate peak discharge and hydrograph form. Flood discharge plans with various reworks in each method, providing mixed results. The greatest result is the Limantara HSS (Q25 = 1,413.13 m3 / sec) and the smallest HSS Snyder (Q25:814,57 m3 / s), while HSS Nakayasu (Q25 = 922.93 m3 / s). From the hydrograph comparative analysis of the three methods for Limantara method, the top time is happened at (Tp: 5.57) with top flow (Qp: 10,19 m3 / s), While Nakayasu method has the same top time at (Tp: 5,93) with top flow (Qp: 11.65 m3 / s) and Snyder method top time happened ad (Tc: 5.57) with top flow (Qp: 10.19 m3 / s). Keywords: Synthetic unit hydrograph Way Tebu, HSS Nakayasu, HSS Limantara, HSS Snyder.

1. Introduction

1.1 Description

Water is a very important need for the life of living things on this earth. The function of water for life can not be replaced by other compounds. The main water use and vital to life is drinking water. Natural water resources consist of sea water, atmospheric water (meteorological water), surface water and ground water.

Way Tebu river is a river located in Pringsewu District with a long river about 57 km, which crosses some village areas in Talang Padang Subdistrict, Pugung District and Pringsewu. The management of Way Tebu River is the authority of the central government which is managed under the Balai Besar Wilayah Sungai Mesuji Sekampung (BBWS-MS). Way Tebu River is currently used as irrigation, fishery, raw water source and other purposes.

Like other rivers in Indonesia, Way Tebu River is often flooded and has caused much harm to the people, even the loss of life. The heavy rain that hit the District of Pagelaran and Pringsewu, causing River Way cane overflowed and inundate settlements in the hamlet Umbulalang, Tanjung Dalam, Pagelaran, Pringsewu.

1.2 Purpose and objectives

The purpose of this thesis is to know the flood discharge of Way Tebu River by Limantara, Nakayasu and Snyder methods. While the purpose of this Thesis is to:

- 1. Rainfall analysis
- 2. Nakayasu Hydrograph
- 3. Limantara Hydrograph
- 4. Snyder Hydrograph
- 5. Comparison analysis Hydrograph
- 1.3 Benefits of research

After analyzing the calculation of Way Tebu River flows using the Nakayasu, Limantara and Snyder method hydrographs, it is expected to be useful as a source of data in planning future water resource buildings.

2. Theoretical basis

Hydrology is a science that explains the presence and movement of water in our nature, which encompasses various forms of water, concerning its changes between liquid, solid, and gas in the atmosphere, above and below the soil surface (Soemarto CD 1995). In general, hydrology is intended as a science concerning water problems (Sri Harto, 1990). Hydrology can be defined as a science related to processes involving the problem of depreciation and addition of hydropower in and on the surface of the earth for each stage of its existence. Hydrology is a science that deals with the Earth's water, its occurrence, its circulation and its flow, its chemical and physical properties, and its reaction to its environment, including its relationship to living beings (International Glossary of Hydrology, 1974).

2.1 Rain frequency analysis

To determine the maximum daily rainfall, the plan which will be used to calculate the flood discharge plan is used Log Pearson Type III method.

2.2 Log Pearson Type III Method

The calculation of the rainfall plan with a certain repeated Log Pearson Type III method is to use the following equation:

$$\overline{\log x} = \frac{\sum \log x}{n} \quad \overline{S \log x} = \sqrt{\frac{\sum \left(\log X - \overline{\log X}\right)^2}{n-1}}$$

$$CS = \frac{n \sum \left(\log X - \overline{\log X}\right)^3}{(n-1)(n-2)(\overline{S \log X})^3}$$

$$\log X = \overline{\log X} + k(\overline{S \log X})$$
Keterangan :
$$\overline{\log X} = \text{The average value of } \log X$$

.....(1)

CS = Coefficient of skewness

 $\mathbf{k} = \mathbf{Characteristics}$ of Pearson type III log distribution

2.3 Chi-Square Test

Tests of conformity with Spreading Test of Chi Square Method is to test whether the selected distribution in curve making matches the empirical distribution. Chi Square Test is intended to determine whether the selected opportunity distribution equation can represent the statistical distribution of the analyzed data.

Chi-Square calculation steps are as follows:

- 1. Sort observation data from big to small
- 2. Determine the number of classes with the equation $K=1 + 3,322 \log N$
- N = Amount of data

K = Number of classes = [100/k]

3. Calculate the value of X

Log X = Log Xrata + (G x S)

4. Calculate the theoretical / calculated frequency value Ft :

Ft = 20% x n

2.4 Flood discharge design

The calculation of the flood discharge design on the basin can be calculated by the method of Nakayasu, Limantara and Snyder based on the rainfall probability calculation data of the plan. Selection of calculation methods based on the conditions that exist in the field and the availability of supporting data.

2.5 Nakayasu Synthetic Unit Hydrograph

In this case the author, using the method of Nakayasu with the following formula:

TI = 0.21 L0.7 L < 15 kmTI = 0.527 + 0.058 L L > 15 kmTP = TI + 0.5 Trexplanation : TI = Time lag (hour)L = long river (km)Tp = peak time (hour)Qp = C A R/3,6 (0,3Tp + 0,3)Tg = 0.21 L0.7 L < 15 kmTg = 0,4+0,058 L L > 15 kmTr = 0,75 TgT0,8 = 0,8 TrTp = Tg + 0.8Tr $Tb = \infty$ 2.6 Limantara Synthetic Unit Hydrograph Area (A) Main River Length (L) The length of the River is measured to the point of weight (Lc) River slope (S) Coefficient of roughness (n) Tg = 0.4 + (0.058 * L)Tg tr = 0.75* tgTp = Tg + 0.8 TrTp T0.3 = a * TgT0.3 Tp + T0.3Tp + T0.3 + 1.5 T0.3 = Tp + 2.5T0.3Qp = 0,042*A0,451*L0,497*Lc0,356*S-0.131*n0,168 2.7 Snyder Synthetic Unit Hydrograph Snyder's synthetic unit hydrograph model makes the following: Tp = 0,75.Ct.(L.Lc) 0,3Tr = tpQp = 2,75 .Cp.A 2.8 Rainfall Intensity Calculation Plan T Year Re- Period

The results of rainfall anniversary design calculations on Way Tebu watershed using the Pearson Log type III distribution method can be presented in the following table:

Т	P(%)	Cs	G	Log X	X (mm)
2	50	2,1354	-0,3226	1,9456	88,2178
5	20	2,1354	0,5853	2,1021	126,4888
10	10	2,1354	1,2898	2,2235	167,2986
20	5	2,1354	2,0760	2,3590	228,5647
25	4	2,1354	2,2332	2,3861	243,2835
50	2	2,1354	2,9513	2,5099	323,5097
100	1	2,1354	3,6727	2,6342	430,7701
1000	0,1	2,1354	6,1064	3,0537	1131,7405

Table 1. Results Calculation of Rainfall Design with Birthdays in Way Tebu River Basin

Source: calculation results

2.9 Calculations of the Nakayasu Synthetic Unit Hydrograph

To calculate the Nakayasu synthetic unit hydrograph the following parameters are required: **Table 2**. Design Rainfall Data

No.	Re- Period	Design Rain	Reductio n Factor	Design Rain x Reduction Factor
	(year)	(mm)		(mm)
1	2	88,218	0,856	75,516
2	5	126,489	0,856	126,489
3	10	167,299	0,856	167,299
4	20	228,565	0,856	228,565
5	25	243,283	0.856	243,283

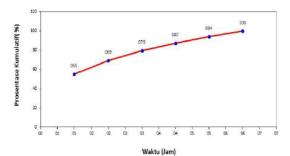
Table 3. Affected By Land Use Flow Coefficient

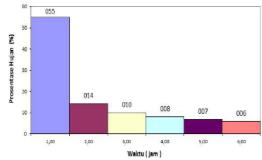
Table 3. Affected By Land Use Flow Coefficient						
Watershed	С	Percentage	Value	C		
conditions	C	of Land	С	(%land)		
Mountains	0.75 - 0.90	5	0,80	0,040		
Tertiary						
Mountains	0.70 - 0.80	10	0,75	0,075		
Heavy-relief						
land and						
wooded wood	0.50 - 0.75	10	0,60	0,060		
Plains of						
agriculture	0.45 - 0.60	15	0,55	0,083		
Irrigated rice						
fields	0.70 - 0.80	10	0,75	0,075		
River in the						
mountains	0.75 - 0.85	15	0,80	0,120		
River in the						
lowlands	0.45 - 0.75	30	0,60	0,180		
Large rivers are						
partly streamed						
in the lowlands	0.50 - 0.75	5	0,65	0,033		
		100	Rerata	0,665		

Average drain coefficient value (based on rainfall intensity & land use) table 4 average Flow coefficient

Realiberate			Flow o	oefficie	ent (C))		
Realiberate	2	5	10	20	25	50	100	A
Rain	0,549	0,456	0,395	0,338	0,327	0,353	0,335	Average
TGL	0,665	0,665	0,665	0,665	0,665	0,665	0,665	
Average	0,607	0,560	0,530	0,501	0,496	0,509	0,500	0,546

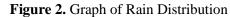
Calculation of the hour-time rain ratio $\Box t = 0,5$ hour= 30 minute. The hourly rain distribution from the centralized rain for 6 hours:


RT = R24/6.(6/t)(2/3) (Distribution of Rain)


Rt = t.RT-(T-1).R(T-1) (Ratio of the Hour)

Hours (t)	Rain distribution (RT)	Rainfall	Rasio	Cumulative
	Hours	hours-to	(%)	[%]
1,00	0,55 R ₂₄	0,55 R ₂₄	55,0 3	55,03
2,00	0,35 R ₂₄	0,14 R ₂₄	14,3 0	69,34
3,00	0,26 R ₂₄	0,10 R ₂₄	10,0 3	79,37
4,00	0,22 R ₂₄	0,08 R ₂₄	7,99	87,36
5,00	0,19 R ₂₄	0,07 R ₂₄	6,75	94,10
6,00	0,17 R ₂₄	0,06 R ₂₄	5,90	100,00
	Jumlah	1,000	100,00	

Table 5. Calculation of hourly rain ratio


Source: calculation results

\

Figure 1. Rain distribution pattern 2. Calculation of the Rainy-Time Ratio

Table 6. Calculation of hourly rain ratios						
(year)	2	5	10	20	25	
(mm)	75,52	108,28	143,21	195,66	208,25	
	0,546	0,546	0,546	0,546	0,546	
(mm)	41,210	59,087	78,151	106,770	113,646	
		Rati	io (%)			
0,550	22,679	32,517	43,008	58,758	62,542	
0,143	5,895	8,452	11,179	15,272	16,256	
0,100	4,135	5,929	7,842	10,713	11,403	
0,080	3,292	4,720	6,243	8,529	9,078	
0,067	2,780	3,986	5,272	7,202	7,666	
0,059	2,430	3,484	4,608	6,296	6,701	
	(year) (mm) (mm) 0,550 0,143 0,100 0,080 0,067	(year) 2 (mm) 75,52 0,546 0,546 (mm) 41,210 0,550 22,679 0,143 5,895 0,100 4,135 0,080 3,292 0,067 2,780	(year) 2 5 (mm) 75,52 108,28 0,546 0,546 (mm) 41,210 59,087 (mm) 41,210 59,087 Ration 100,000 0,550 22,679 32,517 0,143 5,895 8,452 0,100 4,135 5,929 0,080 3,292 4,720 0,067 2,780 3,986	(year) 2 5 10 (mm) 75,52 108,28 143,21 0,546 0,546 0,546 (mm) 41,210 59,087 78,151 Ratio (%) 0,550 22,679 32,517 43,008 0,143 5,895 8,452 11,179 0,100 4,135 5,929 7,842 0,080 3,292 4,720 6,243 0,067 2,780 3,986 5,272	(year) 2 5 10 20 (mm) 75,52 108,28 143,21 195,66 (mm) 75,52 108,28 143,21 195,66 0,546 0,546 0,546 0,546 (mm) 41,210 59,087 78,151 106,770 Ratio (%) 0,550 22,679 32,517 43,008 58,758 0,143 5,895 8,452 11,179 15,272 0,100 4,135 5,929 7,842 10,713 0,080 3,292 4,720 6,243 8,529 0,067 2,780 3,986 5,272 7,202	

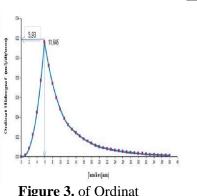
 Table 6. Calculation of hourly rain ratios

Source: calculation results

3. The calculation of the flood design of the Nakayasu Method Area = 307,63 km2Main River Length (L) = 57,00 km $\Box = 1,50$ R0 = 1 mm 3.1 Parameter Tg Tg = 0,4 + (0,058 * L)Tg = 0,4 + (0,058 * 57) = 3,71 hour

The 4th International Conference on Engineering and Technology Development (ICETD 2017)

Tr = 0,75 * TgTr = 0.75 * 3.71 = 2.78 hour 3.2 Parameter Tp Tp = Tg + 0.8 TrTp = 3,71 + 0,8 * 2,78 = 5,93 hour 3.3 Parameter T0,3 T0,3 = a * TgT0,3 = 1,50 * 3,71 = 5,56 hour Tp + T0.3 = 11,49 hour Tp + T0.3 + 1.5 T0.3 = Tp + 2.5T0.3 = 19,83 hr Parameter **Qp** $\tilde{A} R_0$ Qp = $Qp = \frac{1}{3,6(0,3Tp + T_{0,3})}$ $Qp = \frac{307,63 * 1}{3,6(0,3 * 5,93 + 5,56)} = 11,60 \text{ m3/s}$


.....(2)

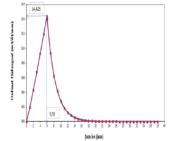

3.4 Looking for Ordinate Hydrograph 1. $0 < t < Tp \ 0 < t < 5,93$ $Qt = Q \max (t/Tp)2.4$ 2. Tp < t < (Tp + T0.3) 5,93 < t < 11,49 $Qt = Q \max (0.3)^{(t-Tp/(T0.3))}$ 3. (Tp + T0.3) < t < (Tp + 2.5T0.3) 11,49 < t < 19,83 $Qt = Qmax (0.3)^{(t-Tp)} + 0.5 T0.3) / 1.5 T0.3)$ 4. t > (Tp + 2.5 T0.3) t > 19,83 $Qt = Qmax (0.3)^{(t-Tp)} + 1.5 T0.3)/(2 T0.3))$

Table 7. Ordinat Hydrograph Nakayasu synthetic unit

t (hours)	Ordinates
0,000	0,000
1,000	0,163
2,000	0,858
3,000	2,270
4,000	4,527
5,000	7,734
5,930	11,645
6,000	11,469
7,000	9,236
8,000	7,437
9,000	5,989
10,000	4,823
11,000	3,884
12,000	3,245
13,000	2,809
14,000	2,431
15,000	2,104
16,000	1,821
17,000	1,576
18,000	1,364
19,000	1,181
20,000	1,029

21,000	0,923
22,000	0,828
23,000	0,743
24,000	0,667
25,000	0,599
26,000	0,537
27,000	0,482
0 <28,0609	3 0,433
29,000	0,388
30,000	0,348
5,931,000	11,49 0,313
32,000	0,280
33,000	0,252
11,349,000<	19,83 0,226
35,000	0,203
36,000	0,182
t >319,000	0,163
38,000	0,146

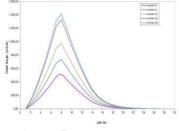


Figure 4. Limantara ordinate graph

Figure 5. Graph of flood discharge design of Limantara HSS

Figure 3. of Ordinat Nakayasu

3.5 Calculation of Synthetic Limit Unit Hydrograph

The synthesis of Limantara Synthetic Unit is influenced by the physical parameters of the watershed. These parameters include: Area of River Basin (A), length of main river (L), length of river measured to center of watershed (Lc), river slope (S) and coarse coefficient (n).

Calculation of Hierarchical Synthesis Hydrograph of Limantara

is as follows:

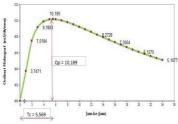
3.6 River Flow	Parameters		
Area (A)	=	307,63	km2
Main River	=	57,00	km
Length (L)			
The length of	=	19,00	km
the River is			
measured to			
the point of			
weight (Lc)			
River slope (S)	=		0,006
Coefficient	of =		0,06
roughness (n)			
Tg = 0.4 + (0.05)	58 * L)		
Tg	=	3,71	hour
tr = 0,75* tg	=	2,78	hour
-			

Tp = Tg + 0.8 T	Γr				
Тр	=		5,93		hour
T0.3 = a * Tg					
T0.3	=		5,56		hour
Tp + T0.3	=		11,49		hour
Tp + T0.3 +	=		19,83		hour
1.5 T0.3 = Tp					
+ 2.5T0.3					
Parameter Qp					
Qp =	=		14,42		m3/dt
0,042*A0,451					
*L0,497*Lc0,					
356*S-					
0.131*n0,168					
Looking for Or	•	lrograph	1		
1. 0 <	t < <		t	<	5,93
Tp -					
>					
$Qt = Q \max(t/T)$	· ·				
2. (1	(Tp)	t	>		5,93
	>				
Qt = Qmax (10))^(0.175 x	(Tp-t))			
			Table 8.	. Ordii	nates of Limanta

t (hours)	Ordinates
1.000	2.011
2,000	4,331
3,000	6,784
4,000	9,328
5,000	11,942
5,930	14,423
6,000	14,019
7,000	9,370
8,000	6,262
9,000	4,185
10,000	2,797
11,000	1,870
12,000	1,249
13,000	0,835
14,000	0,558
15,000	0,373
16,000	0,249
17,000	0,167
18,000	0,111
19,000	0,074
20,000	0,050
21,000	0,033
22,000	0,022
23,000	0,015
24,000	0,010
25,000	0,007
26,000	0,004
27,000	0,003
28,000	0,002
29,000	0,001
30,000	0,001
31,000	0,001

Tabel 9. Rekapitula	si Debit Banji	r HSS Limantara	untuk t = 7 jam

No.	re-time	flood discharge		
	(tahun)	(m ³ /det)		
1	2	512,42		
2	5	734,72		
3	10	971,77		
4	20	1.327,64		
5	25	1.413,13		


3.7 Calculation of Snyder Synthetic Unit Hydrograph

The parameters required in the Snyder HSS analysis are the area of the watershed (A), the length of the main river (L), the distance of the watershed with the outlet (Lc). The calculation of HSS Snyder is as follows:

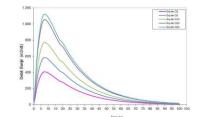

Area of the watershed $(A) = 307.63 \text{ km}^2$ Length of the main river (L) = 57,00 kmDistance of River Flow Point to outlet (Lc) = 19,00 kmThe tributary coefficient of the Watershed (Ct) = 1,250Characteristic coefficient of Watershed (Cp) = 0,60n = 0,201 Waktu dari titik berat ke puncak hidrograf tr = 6 jamtp = Ct (L.Lc)n = 5,06 hours Tp' = tp + 0.5 Tr = 5.56 hours tc=tp/5,5 $\varepsilon = 0.92$ jam > Tr $\varepsilon = 0.92$ jam > Tr t'p = tp + 0.25 * (tE - tR) = 5.04 hours $Tp = t^{2}p + 0,50 * Tr = 5,54$ hours qp=0,278*cp/t'p=0,032 Peak discharge hydrograph Qp = qp * A = 10,19 m3/sThe unit hydrograph ordinate is calculated by (Qp*Tp)/(h.A)the Alexeyev equation: $\lambda =$ $\lambda = 0.18$ $a = 1,32 * \lambda 2 + 0,15 \lambda + 0,045 = 0.12$

Table 10. Synthetic Unit of Way Tebu Cane (Snyder Method) Hydrograph

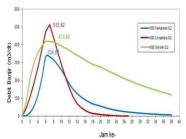
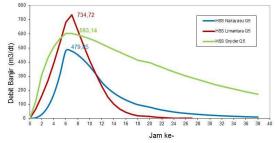

t (jam)	x	Y	Q	
	t/Tp	10 ^{-m(1-x)^2/x}	Y * Qp	
(1)	(2)	(3)	(4)	
1	0,1806	0,3678	3,7471	
2	0,3613	0,7379	7,5184	
3	0,5419	0,9010	9,1803	
4	0,7225	0,9717	9,9008	
5	0,9032	0,9972	10,1604	
0	1,0838	0,9983	10,1711	
7	1,2644	0,9852	10,0383	
8	1,4450	0,9638	9,8198	
9	1,6257	0,9372	9,5495	
10	1,8063	0,9077	9,2482	
11	1,9869	0,8764	8,9295	
12	2,1676	0,8443	8,6023	
13	2,3482	0,8119	8,2728	
14	2,5288	0,7798	7,9450	
15	2,7095	0,7481	7,6219	
16	2,8901	0,7170	7,3054	
17	3,0707	0,6867	6,9970	
18	3,2513	0,6573	6,6975	
19	3,4320	0,6289	6,4076	
20	3,6126	0,6014	6,1275	
21	3,7932	0,5749 5,8575		
22	3,9739	0,5494	5,5976	
23	4,1545	0,5249	5,3477	
24	4,3351	0,5013	5,1077	
25	4,5158	0,4787	4,8774	

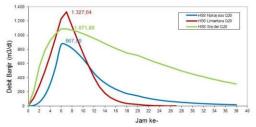
Figure 6. Snyder ordinate Graph

Figure 7. Graph of flood discharge design of HSS Snyder

Figure 8 Graph of flood design Hydrograph of Nakayasu Synthesis Unit, Limantara and Snyder Q2


Table 11.Results of Flood Debit calculation Hynrograph Synthesis Unit Snyder for t = 6 hours

No.	Realiberate	Flood Discharge		
	(tahun)	(m ³ /det)		
1	2	419,88		
2	5	602,03		
3	10	793,19		
4	20	1.087,86		
5	25	1.157,92		
Courses calcula				


Source: calculation results

3.8 Comparison of Synthetic Hydrographs Nakayasu, Limantara and Snyder

From the above synthesized Hydrographs, we can illustrate the comparison graph between the Nakayasu Synthesizing Units, Limantara and Snyder for Q2, Q5, Q10, Q20 and Q25 as shown below.

Figure 9. Graph of flood design of Hydrograph of Nakayasu Synthesis Unit, Limantara and Snyder Q5

Figure 11. Graph of flood design of Hydrograph of Nakayasu Synthesis Unit, Limantara and Snyder Q20

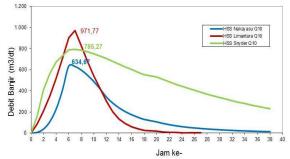
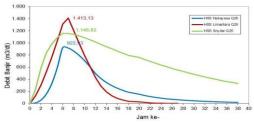



Figure 10.Graph of flood design ofHydrograph of Nakayasu Synthesis Unit,LimantaraandSnyderQ10

Figure 12. Graph of flood design of Hydrograph of Nakayasu Synthesis Unit, Limantara and Snyder Q25

	Kala Ulang	Hidrograf Satuan Sintetis							
No		Nakayasu		Limantara		Snyder			
		Tp Jam	Qp M3/dt	Tp Jam	Qp M3/dt	Tp Jam	Qp M3/dt		
1	2	5,93	334,67	5,93	512,42	5,56	419,88		
2	5	5,93	479,85	5,93	734,72	5,56	602,03		
3	10	5,93	634,67	5,93	971,77	5,56	793,19		
4	20	5,93	867,09	5,93	1.327,64	5,56	1.087,86		
5	25	5,93	922,93		1.413,13	5,56	1.157,92		
Caracter	Sumber - Useil norhitungan								

Table 12. Comparison of HSS debit of Nakayasu, Limantara and Snyder

Sumber : Hasil perhitungan

4. Conclusion

From the results of the discussion thesis "Evaluation of Flood Calculation Plan With Hydrograph Method Nakayasu, Limantara and Snyder on Sub Catchhement Way River Cane" can be concluded as follows:

a. From the analysis of rainfall, the selected rain frequency distribution using Log Person Type III method.

b. Flood discharge plans with various reworks in each method, providing mixed results. The greatest result is the Limantara HSS (Q25 = 1,413.13 m3 / sec) and the smallest HSS Nakayasu (Q25 = 922.93 m3 / s), while the HSS Snyder (Q25: 1,157.92 m3 / s).

c. From the hydrograph comparative analysis of the three methods it is concluded that the peak flood time (Tp) is almost simultaneously no significant difference, but for the peak discharge (Qp) there are differences in each of these methods. Limantara peak time occurs at hours (Tp: 5,93) with peak discharge (Qp: 14,42 m3 / s), Nakayasu peak time occurs at hour (Tp: 5,93) peak discharge (Qp: 11.65 m3 / st) and Snyder peak time occurs at hour (Tc: 5.57) peak discharge (Qp: 10.19 m3 / s).

Reference

[1] Triatmodjo, B. 2010. Hidrologi Terapan. Beta Offset, Yogyakarta.

[2] Montarcih, L. 2010. Hidrologi Teknik Dasar. Citra Malang, Malang.

[3] Montarcih, L. 2010. Hidrologi Praktis, CV. Lubuk Agung, Bandung.

[4] Soemarto, CD. 1995. Hidrologi Teknik. Erlangga, Jakarta.

[5] Soewarno. 1995. Hidrologi : Aplikasi Metode Statistik untuk analisa data. (Jilid I). Nova. Bandung

[6] Sri Harto. Br.1993. Analisis Hidrologi. Andi, Yogyakarta.